
Динамические системы, 2020, том 10(38), №2, 129–139

MSC 2010: 37D05, 37D15

On Realization of Gradient-like Flows on the
Four-dimensional Projective-like Manifold1

E.Gurevich, A. Chernov, A. Ivanov
National Reseasrch University Higher School of Economics
Nizhnii Novgorod, 603155.
E-mail: egurevich@hse.ru, mrandche@gmail.com, artynn98@gmail.com

Abstract. In 1962 Eells and N. Kuiper provided manifolds admitting the Morse function with exactly
three critical points. They shown that the dimension n of such manifolds takes the values 2, 4, 8 and 16,
and the critical points of the Morse function have indices 0, n/2 and n. Later these manifolds were called
projective-like. In 2013 E. V. Zhuzhoma and V. S. Medvedev obtained a topological classification of
gradient flows of such Morse function. In particular, they proved that all such flows on four-dimensional
manifolds are topologically equivalent that means that there is only one projective-like manifold of
dimension four (that is not true for higher dimension). In this paper, we study the relationship between
the numbers of equilibrium states of various indices of a gradient-like flow on the projective-like
manifold of dimension four. We also provide an algorithm of realization such flows with the given
numbers of equilibrium states of different indices.
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1. Introduction and Statement of Results

Let Mn be a smooth closed connected manifold of dimension n. Recall that a flow
f t on Mn is called Morse-Smale if its non-wandering set Ωf t belongs to a finite set
of hyperbolic equilibrium states and closed trajectories, and invariant manifolds of
different equilibrium states and closed trajectories have only transversal intersection.
A Morse-Smale flow without closed trajectories is called gradient-like. S. Smale in [1]
showed that for an arbitrary manifold Mn there exists a Morse function (a smooth
function whose critical points are non-generated) defined on Mn, and it is possible to
choose a metric on Mn such that the gradient flow of the Morse function will be a
gradient-like flow. Hence, gradient-like flows exist on all manifolds.

1This work was supported by the Russian Science Foundation under grant 17-11-01041, except
the proof of Theorem 1 which was performed with support of the Laboratory of Dynamical Systems
and Applications NRU HSE, of the Ministry of science and higher education of the RF grant ag. №
075-15-2019-1931.
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Recall that the sets

W s
p = {q ∈Mn : lim

t→+∞
f t(q) → p},W u

p = {q ∈Mn : lim
t→+∞

f−t(q) → p}

are called stable and unstable manifolds of an equilibrium state p correspondingly.
According to [2, Theorem 2.3], if there is a gradient-like flow f t on a manifold Mn

then Mn is a disjoint union of stable manifolds of all points from Ωf t and for any
point p ∈ Ωf t its stable and unstable manifolds are smoothly embedded open balls.
Dimension dimW u

p of the unstable manifold of the point p is called a Morse index
of p. It follows from hyperbolicity of the point p that dimW u

p ∈ {0, 1, . . . , n} and
dimW s

p + dimW u
p = n. An equilibrium p such that dimW u

p = 0 (dimW u
p = n) is

called a sink (a source), and an equilibrium p such that dimW u
p ∈ (0, n) is called a

saddle point.
It follows from the observation above that for any gradient-like flow f t the set Ωf t

contains at least one source and one sink. If the set Ωf t is exhausted by these two
points, then the ambient manifold Mn is a sphere, and all such flows are topologically
equivalent. According to [9] any gradient-like flow has an energy function — a Morse
function decreasing along non-singular trajectories of f t such that the set of critical
points of f coincides with the set Ωf t . Then the question of an existing of gradient-like
flows with non-wandering set consisting of exactly three equilibrium states is reduced to
the problem of existing of Morse function with exactly three critical points. Manifolds
admitting such Morse function were studied in [7]. In particular, there was proven that
the dimension of these manifolds takes the values n ∈ {2, 4, 8, 16} and the indices of
the critical points equal 0, n

2
, n. For n = 2 this manifold is the projective plane.

Gradient-like flows with non-wandering set consisting of exactly three points were
studied in [3], [4]. In these papers manifolds admitting such flows were called projective-
like manifolds. It was also proved that for n = 4 all flows on a projective-like
manifold which non-wandering set consists of exactly three hyperbolic equilibrium
states are topologically equivalent. Hence, all four-dimensional projective-like manifolds
are homeomorphic. This fact is not true in case n > 4, since, due to [7], in each
dimension 8, 16 there exist projective-like manifolds with different homotopy types.

In this paper, we do the first step to solution of a problem of topological classification
of gradient-like flows on projective-like manifolds with arbitrary number of equilibria.
Namely, we study a structure of a non-wandering set of gradient-like flows on a
projective-like manifold of dimension four and provide an algorithm of a realization
of such flows for given number of equilibria of different Morse indices.

For gradient-like flow f t on a four-dimensional manifold denote by lf t the number of
sink аnd source equilibrium states, by hf t — the number of sаddle equilibrium stаtes of
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Morse index two, and by kf t the number of sаddle equilibrium stаtes of Morse indices
one and three.

Main results of the paper are following.

Theorem 1. Let f t be a gradient-like flow on the four-dimensional projective-like
manifold M4. Then lf t−kf t+hf t = 3. If for any two different saddle equilibria p, q ∈ Ωf t

the intersection W s
p ∩W u

q is empty then hf t = 1.

Theorem 2. Let l ≥ 2, k ̸= 0, h ≥ 1 be integers such that l − k + h = 3. Then
there is a gradient-like flow f t on the four-dimensional projective-like manifold such
that lf t = l, kf t = k, hf t = h.

2. The Structure of non-wandering set of gradient-like flows on
four-dimensional projective-like manifolds

This section is devoted to the proof of Theorem 1.

2.1. Auxiliary results

Let us recall that a sphere Sk is the manifold homeomorphic to the standard sphere
Sk = {(x1, . . . , xk+1) ⊂ Rk+1| x21 + · · · + x2k+1 = 1}, a ball (an open ball) Bn is the
manifold homeomorphic to the standard ball (the interior of the standard ball) Bn =

{(x1, . . . , xn) ⊂ Rn| x21 + · · ·+ x2n ≤ 1}.
The sphere Σk topologically embedded in a topological manifoldMn (1 ≤ k ≤ n−1)

is called locally flat if for any point z ∈ Σk there exists a neighborhood Uz ⊂ Mn and
a homeomorphism φz : Uz → Rn such that φz(Σk ∩Uz) = Rk ⊂ Rn. If the sphere Σk is
not flat at a point z, then the point z is called the point of wildness and the sphere Σk

is called wild.
The statement below follows from [2, Theorem 2.3].

Statement 1. Let f t be a gradient-like flow on a closed manifold Mn. Then

1. Mn =
∪

p∈Ωft

W s
p =

∪
p∈Ωft

W u
p ;

2. for any point p ∈ Ωf t the manifold W u
p is a smooth submanifold of Mn;

3. for any point p ∈ Ωf t and any connected component lup of set W u
p \ p the closure

cl lup of lu satisfy the equality cl lup \ (lup ∪ p) =
∪

q∈Ωf :W s
q ∩lup ̸=∅

W u
q .
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Item 1 of the Statement 1 and the fact that an unstable manifold of a hyperbolic
equilibrium state p is a ball of dimension indp ∈ {0, . . . , 4} lead to the fact that the set
Ωf t of any gradient-like flow f t contains at least one source and one sink. Indeed, in
the absence of sinks (or sources), a manifold Mn of dimension n would be represented
as a finite union of smoothly embedded balls of smaller dimension that is impossible.

Everywhere below we suppose that f t is a gradient-like flow on projective-like
manifold M4.

Denote by Ωi
f t the set of all equilibrium states of the flow f t which have the

dimension of the unstable manifold equal to i ∈ {0, 1, 2, 3, 4} and by |Ωi
f t | the capacity

of the set |Ωf t|. Put lf t = |Ω0
f t| + |Ω4

f t |, kf t = |Ω1
f t | + |Ω3

f t |, and hf t = |Ω2
f t |. It

follows from [7] that Euler characteristic χ(M4) of M4 is 3. Then due to Poincare-Hopf
Theorem we have

lf t − hf t + kf t = 3. (2.1)

It immediately follows from Equation (2.1) that if the set Ω1
f t ∪ Ω3

f t is empty then
the set Ωf t consists of exactly three equilibrium states: a source, a sink, and a saddle
with a Morse index two.

Let p, q ∈ Ωf t are saddle points such that W s
p ∩ W u

q ̸= ∅. Then the intersection
W s
p ∩W u

q is called heteroclinic intersection.

Lemma 1. Let a flow f t has no heteroclinic intersections, and p ∈ Ω1
f t (p ∈ Ω3

f t).
Then the closure clW s

p (clW u
p ) of stable (unstable) manifolds W s

p (W u
p ) of the point p

is a locally flat sphere of dimension 3 that divides the manifold M4 into two connected
components.

Proof. Assume that the set Ω1
f t is non-empty and prove the lemma for an arbitrary

point p ∈ Ω1
f t (the proof for the point p ∈ Ωn−1

f t is carried out similarly). It follows
from item 3 of Statement 1 that for any point p ∈ Ω1

f t the closure clW s
p of its stable

manifold W s
p is the union of the manifold W s

p itself and a source equilibrium state αp.
Therefore clW s

p is a sphere of dimension (n − 1). Due to item 2 of Statement 1 the
sphere clW s

p is smooth (and, therefore it is locally flat) at all points of W s
p . According

to [8, St 3A.6] a sphere Sn−1 embedded in a manifold Mn of dimension n ≥ 4 is either
locally flat at each point or has more than a countable number of wildness points2.
Hence, clW s

p is a locally flat sphere.
Let us show that the sphere clW s

p divides the manifold M4 into two connected
components. Since, by virtue of [7], the fundamental group π1(M

4) is trivial then M4

2In the paper [8] it is noted that this statement is a consequence of results of A. V. Chernavsky
and R. Kirby obtained independently in 1968. Earlier, in 1963, J. Cantrell proved the following: if the
sphere Sn−1 ⊂ Sn, n ≥ 4, is wild and B is a set of points such that Sn−1 is locally flat in each point
of the set Sn−1 \B, then the set B consists of more than one point (see [6]).
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is orientable. By [5, Theorem 3] a locally flat sphere Sn−1 in an orientable manifold Mn

(n ≥ 3) is cylindrically embedded, which means that there is a closed neighborhood
V ⊂ Mn of a sphere Sn−1 and a homeomorphism h : Sn−1 × [−1, 1] → V such that
h(Sn−1 × {0}) = Sn−1. Therefore there is a neighborhood Vp of the sphere clW s

p ,
which is divided by the sphere clW s

p into two connected components. Choose points
x, y that belong to different connected components Vp \ clW s

p and connect them with
a smooth arc lp ⊂ Vp that intersects the sphere clW s

p at the only one point. If clW s
p

does not divide M4, then there is an arc bp ⊂ M4 \ clW s
p connecting the points x, y.

By construction, the intersection index of the arc λp = lp ∪ bp and the sphere clW s
p is

1 or −1 (depending on the choice of orientations). On the other hand, since πn−1(M
4)

is trivial, it is not difficult to choose a sphere Sn−1 ⊂M4 \λp, homotopic to the sphere
clW s

p . Since the intersection index is a homotopy invariant, the intersection index of
the sphere Sn−1 and the arc λp must be equal ±1, but since Sn−1 ∩ λp = ∅, it equals
to zero. This contradiction proves that the sphere clW s

p divides the manifold M4 into
two connected components.

Remind that the set A is called an attractor of a flow f t if there is a closed
neighborhood (a trapping neighborhood) V ⊂ Mn such that all trajectories of the
flow f t intersect its boundary ∂V transversally, and A =

∩
t>0

f t(V ). The set R is called

a repeller of the flow f t if it is an attractor for the flow f−t.
Set

Af t =
∪

p∈Ω0
ft

∪Ω1
ft

W u
p , Rf t =

∪
p∈Ω3

ft
∪Ω2

ft
∪Ω4

ft

W s
p

.

Lemma 2. If f t has no heteroclinic intersections then the set Af t is a connected
attractor with a trapping neighborhood diffeomorphic to the ball.

Proof. It follows from [1, 9] that there is a Morse function φ : M4 → [0, 4] such that
the set of critical points of φ coincides with the set Ωf t , φ(p) = ind(p) for any p ∈ Ωf t ,
and φ(f t(x)) < φ(x) for any point x ̸∈ Ω(f t) and t > 0. Let us show that the set
V = φ−1([0; 1, 5]) is a trapping neighborhood for Af t .

It follows from the definition that Af t ⊂ V . Since Af t is invariant then Af t ⊂∩
t>0

f t(V ). Let us prove that Af t =
∩
t>0

f t(V ). Assume the opposite. Then there is a point

x ∈
∩
t>0

f t(V )\Af t . Statement 1 implies that there is an equilibrium state p ∈ Ωf t such

that x ∈ W u
p . Since the set

∩
t>0

f t(V ) is closed and invariant then p ∈
∩
t>0

f t(V ) \ Af t ,

which is impossible, since the set V does not contain equilibrium states other than
those which belong to Af t . Therefore, Af t =

∩
t>0

f t(V ) and Af t is an attractor.
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Let us prove that the trapping neighborhood V is connected. Then Af will be
connected as the intersection of connected compact nested sets. Assume that V is
disconnected, that is it can be represented as a union of two disjoint non-empty
invariant subsets E1, E2. Then the union

∪
p∈Aft

W s
p =

∪
t∈R

f t(E1 ∪ E2) is disconnected.

Due to Statement 1, M4 =
∪

p∈Aft

W s
p ∪ Rf t , then M4 \ Rf t =

∪
p∈Aft

W s
p , so Mn \ Rf t is

disconnected. On the other hand, since the dimension of the set Rf t does not greater
than one, then Rf t does not divide M4, therefore the set M4 \ Rf t is connected. This
contradiction proves that V and Af t are connected.

To prove that V is a ball let us prove that Af t does not contain subsets
homeomorphic to a circle. Assume the opposite: let c ⊂ Af t be a simple closed curve.
It follows from Items 1,3 of Statement 1 that the set Af t \ Ω1

p is a finite set of arcs
lying in the disjoint union of stable manifolds of sink equilibria. Therefore there is an
equilibrium state p ∈ Ω1

f t such that p ∈ c. Due to Lemma 2, the set clW s
p divides the

ambient manifold M4 in two connected components. Therefore clW s
p also divides the

curve c, so there is a point x ∈ c ∩ clW s
p different from p. The point x cannot be a

source, since Af t does not contain sources by construction. The point x cannot be a
sink or since x ∈ W s

p \ p and only non-wandering point in W s
p is p. Hence, x belongs to

a one-dimensional unstable manifold of some point q ∈ Ω1
f t , but we supposed that f t

has no heteroclinic intersections, so we get a contradiction.
Thus the set Af t can be represented as a connected graph without cycles, whose

vertices are sink points and edges are one-dimensional unstable manifolds of saddle
points. Then |Ω0

f t | = |Ω1
f t |+1. It follows from Morse theory that the set V is a smooth

subset of M4 obtained from the disjoint union of |Ω0
f t| balls by gluing |Ω1

f t | handles of
index 1. Using induction one can easy prove that V is a ball.

Set R̃f t =
∪

p∈Ω3
ft

∪Ω4
ft

W s
p . Considering f−t and applying the Lemma 2 one can get

that R̃f t is a connected attractor for f−t (hence, it is a repeller for f t) with a trapping
neighborhood W diffeomorphic to the ball. This observation and Lemma 2 immediately
lead to the following statement.

Corollary 1. In assumption of Lemma 2 there are smoothly embedded balls V,W ⊂M4

such that:

1. Af t ⊂ V , R̃f t ⊂ W ;

2. trajectories of the flow f t are transversal to the boundaries of the balls V,W and
are oriented out of the interior of W to the interior of V ;
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3. the non-wandering set of the flow f t restricted on the set M4 \ (V ∪W ) consists
of the equilibrium states of index 2.

2.2. Proof of Theorem 1

Remind that a connected sum of smooth orientable connected manifolds Mn
1 ,M

n
2

is the manifold Mn
1 ♯M

n
2 obtained as follows. Let Bn

1 ⊂ Mn
1 , B

n
2 ⊂ Mn

2 be two balls.
Then the manifold Mn

1 ♯M
n
2 is the result of gluing manifolds Mn

1 \ Bn
1 ),M

n
2 \ Bn

2 by
a reversing the natural orientation diffeomorphism h : ∂Bn

1 → ∂Bn
2 . According to [10,

Lemm 2.1], the connected sum operation is defined the unique (up to diffeomorphism)
manifold and does not depend on the choice of balls and a gluing homeomorphism.

Proof of Theorem 1. Suppose that a gradient-like flow f t on the projective-
like manifold M4 has no heteroclinic intersections. Let us show that the set of saddle
equilibrium states of the flow f t contains exactly one equilibrium state whose Morse
index equals two. Then the equality lf t − kf t = 2 will immediately follow from Hopf-
Poincare formula 2.1.

Let W,V ⊂ M4 be balls described in Corollary 1. Then M4 \ int (W ∪ V ) is
the manifold with boundary consisting of two (n − 1)-spheres. Let Bn+,Bn− be two
standart balls enriched by vector fields ẋ = x, ẋ = −x correspondingly. Glue balls
Bn+,Bn− to M4 \ int (W ∪ V ) with reversing the natural orientation diffeomorphism
φ : ∂Bn+ ∪ ∂Bn− → ∂W ∪ ∂V , denote by M̃4 the resulting manifold and by πφ : Bn+ ∪
Bn− ∪ M4 \ int (W ∪ V ) → M̃4 the natural projection. It is possible to choose the
diffeomorphism φ in such a way that it induce on M̃4 a gradient-like flow f̃ t such
that f̃ t|M4\int (W∪V ) = πf t|M4\int (W∪V ) and the restrictions f̃ t|Bn

+
, f̃ t|Bn

−
are topologically

equivalent to dilatation and contraction correspondingly. So, non-wandering set of the
flow f̃ t consists exectly of one source, one sink, and |Ω2

f t | saddles of index 2. The
operation of gluing balls is equivalent to taking a connected sum with two spheres, so
the manifold M̃4 is diffeomorphic to the original manifold M4. Then, due to Poincare-
Hopf formula 2.1, |Ω2

f t | = 1. The Theorem 1 is proven.

3. Realization of gradient-like flows on four-dimensional
projective-like manifolds

This section is devoted to the proof of the Theorem 2. Let l ≥ 2, k ≥ 0 and h ≥ 1

be integers such that l − k + h = 3.
We are going to construct a gradient-like flow f t such that the number lf t of sink

and source equilibrium states of f t equals l, the number hf t of saddle equilibrium states
of Morse index two equals h, and the number kf t of saddle equilibrium states of Morse
index different from two equals k.
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To construct the desired flow we define below auxiliary flows gt1, gt2 on the projective-
like manifold M4 and the sphere S4, respectively, with the following properties:

1. the non-wandering set of the flows gt1 consists exactly of one source, (k − h+ 1)

saddles of Morse index one, one saddle of Morse index two and (k− h+2) sinks;

2. the non-wandering set of the flows gt1 consists exactly of one sink, one source,
(h− 1) saddles of Morse index one and (h− 1) saddles of Morse index two.

Choose the balls Bn
1 ⊂ M4, Bn

2 ⊂ S4 that intersect with the sets Ωgt1
,Ωgt2

exactly
at one point: the sink and source respectively, lying in the interior of the balls B4

1 , B
4
2 .

We form a connected sum of manifolds M4, S4 by cutting out the interiors of the
balls B4

1 , B
4
2 and gluing the resulting manifolds by a diffeomorphism to induce on the

manifold M4♯S4 a gradient-like flow f t such that the non-wandering set of the flows
f t consists exactly of l = 3 + k − h sinks and sources, k saddles of the index 1, and
h saddle of the index 2 (see, for example [14]). The connected sum operation with a
sphere does not change the topological type of the manifold, so the manifold M4♯S4 is
the projective-like manifold, so f t is the desired flow.

3.1. Construction of the flow gt1

Let us describe the buiding of the flow gt1 step by step.
Step 1. Realization of a gradient-like flow gt0 whose non-wandering set consists of

exactly three equilibria: a source, a sink and a saddle of Morse index two.
Let us define the flow f tk on the handle H4

k = Bk ×B4−k of the index k ∈ {0, . . . , 4}
by the following system of differential equationsẋ = x, x ∈ Bk

ẏ = −y, y ∈ B4−k.

A non-wandering set of the flow f tk consists of a single equilibrium state O which
Morse index is k. For k > 0 trajectories of the flow f tk having non-empty intersection
with the foot F 4

k = ∂Bk × B4−k of H4
k intersect the foot transversally and directed

outside of H4
k .

First, we are going to obtain a projective-like manifold M4 by sequentially gluing
to the handle H4

0 the handles H4
2 and H4

4 . After the gluing handles, the flows f t0, f t2, f t4
will induce on M4 the desired flow gt0.

The foot F 4
2 = S1 × B2 is a solid torus whose core S1 × {O} (here O — the center

of the ball B2) belongs to the unstable separatrix of the saddle equilibrium state of the
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flow f t2. Remark that ∂H4
0 = S3. Let c ∈ S3 be a node (a simple closed curve), Nc is its

closed neighborhood, and Pc = S3 \ intN .
Let us denote by Xφ a manifold with a boundary obtained by gluing the handle

H4
0 to the handle H4

2 by means a diffeomorphism φ : F 4
2 → Nc. We are going to glue

the handle H4
4 to X and obtain a closed manifold, then the boundary of X must

be diffeomorphic to the sphere S3. For this purpose we should choose the gluing
diffeomorphism φ : F 4

2 → ∂H4
0 and the node c.

As the gluing diffeomorphism φ : F 4
2 → Nc is a solid torus diffeomorphism, it maps

the meridian of F 4
2 to the meridian of Nc. But the meridian of F 4

2 is the longitude
of solid torus ∂H4

2 \ int F 4
2 . So, the gluing operation is a nontrivial surgery. By virtue

of [11, Theorem 1], no nontrivial surgery along a nontrivial node will give a sphere. It
follows that the knot c must be the boundary of a 2-disk in S3. Hence, Pc is the solid
torus. Let φ send the longitude of Nc to the curve of homotopy type (1, 1) in ∂Nc.
Then, due to [12], ∂X will be the sphere.

Now we are able to glue the handle H4
4 to X by an arbitrary orientation reversing

diffeomorphism ψ : ∂H4
4 → ∂X. As a result, we get a closed manifold M4 carrying

a gradient-like flow gt1 whose non-wandering set consist of exactly three equilibrium
states. Hence, M4 is the projective-like manifold.

Step 2. A realization of a gradient-like flow ht on the sphere S4 whose non-
wandering set consists of exactly one source, k saddles of index 1, and k + 1 sink.

Define a gradient-like flow ψt on the sphere S4, which has a non-wandering set
consisting of exactly one source, k saddles of index 1, and k + 1 sinks.

We construct k copies of the sphere S4
1 , . . . , S

4
k , each of which carries the flow ψti ,

i ∈ {1, . . . , k} whose non-wandering set consists of exactly one source αi, one saddle
σi of index 1, and two sinks ω+

i , ω
−
i . To do this, we glue one handle of index 1 to two

handles of index 0 to get the ball carrying a gradient-like flow whose trajectories are
transversal to the boundary of the ball and the non-wandering set consists of two sinks
and one saddle. Then we glue the handle H4

4 to the obtained manifold. As a result, we
get the desired flow ψti .

Select a ball B4
1 ⊂ S4

1 (B4
2 ⊂ S4

2) that intersect the set Ωψt
1
(Ωψt

2
) exactly at one point

which is the sink ω+
1 (the source α2) lying in the interior of the ball Bn

1 (B
n
2 ). We define a

connected sum of spheres S4
1 , S

4
2 by cutting out the interiors of balls B4

1 , B
4
2 and gluing

the resulting manifolds with the boundary by an orientation-inverting diffeomorphism
h1,2 : ∂B

n
1 → ∂Bn

2 such that h1,2(W u
σ1
) ∩ W s

σ2
= ∅. The gluing operation induce a

gradient-like flow ψt1,2 without heteroclinic intersection on the connected sum S4
1♯S

4
2 .

Set S4
1,2 = S4

1♯S
4
2 . The non-wandering set of the flow ψt1,2 consists of one source, two

saddles of index 1, and three sinks. Similarly, we form a connected sum of the spheres
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S4
1,2 and S4

3 , and so on. After k steps, we get the desired flow ψt.
Step 3.Construction of the desired flow gt1
Let us consider the projective-like manifold M4 carrying the flows gt0 defined on the

Step 1 and the sphere S4 carrying the flow ht defined on the Step 2. As it described
above, it is possible to construct the connected sum M4♯S4 and induce the desired flow
gt1 on the M4♯S4.

3.2. Construction of the flow gt2

Let us construct an auxiliary gradient-like flows ηt on the sphere S4 whose non-
wandering set consists exactly on one source, one sink, and two saddles of Morse index
one and two respectively. In [13] it is proved that the intersection of invariant manifolds
of these two saddles is non-empty and consists of finite number of non-compact curves
(trajectories) that are called heteroclinic curves. Then we take (h − 1) ≥ 1 copies of
spheres with carrying such flows and construct the connected sum of the spheres as it
described above. As a result we obtain the desired flow gt2.

To construct a flow ηt let us construct a mainfold M1 by gluing the hande H1 to
the hand H0 by meanse of an arbitrary smooth embedding g : S0 × B4 → S3. Then
∂ M1 is homeomorphic to S2 × S1 and flows f t0, f t1 induce on M1 a gradient-like flow ηt1
whose non-wandering set consists of exactly two equilibria: a source ω and a saddle σ1
of Morse index one.

Set S2
ηt1

=W s
σ1
∩∂M1. By construction S2

ψt is the 2-sphere which does not bounds any
ball in ∂M1. Then there is a homeomorphism θ : S2×S1 → ∂M1 such that θ(S2×{x}) =
S2
ηt , x ∈ S1. Set c = θ(z×S1), z ∈ S2 and denote by Nc ⊂ ∂ M1 a tubular neighborhood

of the node c. Let µ : S1 × B2 → Nc be a diffeomorphism such that µ(S1 × {O}) = c.
Denote by M2 a manifold obtained by gluing the handle H2 to M1 by means of µ. The
boundary of M2 is the result of gluing two solid tori ∂H2\int (S1×B2) and ∂M1\intNc

by means of the diffeomorphism η|S1×S1 that sends a longitude of ∂H2 \ int (S1 × B2)

to the meridian of the solid torus ∂N1. Hence ∂M2 is 3−sphere. More over, due to [15,
Theorems 3.30., 3.34], the manifold M2 is diffeomorphic to the ball H0.

Glue M2 and the hand H4
4 to get the sphere S4 and the desired gradient-like flow ηt.
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