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Abstract. We consider linear non-autonomous delay differential equations of first order, and study
effective conditions guaranteeing that all solutions of an equation oscillate, in the form of an estimate
for the lower limit at infinity of a functional of coefficients and delays of the equation. Such conditions
generalize the well-known Myshkis oscillation test for a linear equation with a single delay, in the form
of an inequality with 1/e in its right-hand side. We consider three different approaches to obtaining
such conditions for equations with several concentrated delays, and compare these approaches with
each other. We present several new examples in order to show the effectiveness of the approaches and
advantages of each of them over the others.
Keywords: delay differential equations, oscillation, explicit test.

1. Introduction

Linear first-order delay differential equations, in contrast to linear first-order
ordinary differential equations, can have oscillating solutions. In particular, due to this
property of solutions, equations with aftereffect serve as good mathematical models for
describing a number of processes in biology, chemistry, and the theory of automatic
control.

The problem of oscillation conditions for first-order differential equations was first
investigated by Myshkis [15]. For 20 years after his pioneering works the problem did
not attract researchers, since the directions of systematic research of equations with
aftereffect in that time were mainly determined by the desire to transfer known results
of the theory of ordinary differential equations to delay equations. Several papers on the
oscillation of solutions to first-order equations were published in the 1970s. They led to
the Koplatadze—Chanturiya theorem [10] on conditions for oscillation of all solutions
of a linear non-autonomous equation. This theorem generalized results by Myshkis and
Ladas [12]. Over the past 40 years, the number of papers devoted to effective oscillation
conditions for first-order delay equations has been steadily growing. However, despite
the fact that some of recent papers of this kind contain reviews of known results, there
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is no complete portrait of the phenomenon. This article is devoted to some of the
most significant achievements in the study of effective oscillation tests. Namely, we
consider sufficient conditions for the oscillation of all solutions to linear non-autono-
mous equations of stable type with several delays. The conditions should be explicitly
expressed in terms of parameters of a given equation.

The paper is organized as follows. In the second section we specify some questions
that arose when studying the oscillation problem for linear first-order equations. In
the third section we consider three fruitful approaches to generalizing the Myshkis
lower-limit oscillation test in the form of inequality with 1/e in its right-hand side.
Two of the approaches are generalizations of the integral oscillation condition obtained
by Koplatadze and Chanturiya, and the third one is the Hunt—Yorke theorem. In the
fourth section we present several new examples in order to compare the domains of
applicability of the approaches represented in the third section.

2. Lower-limit oscillation tests

Definition 1. We say that a continuous on the semiaxis R+ ≡ [0,+∞) function
oscillates, if it has an unbounded from the right sequence of zeros.

Definition 2. We say that a differential equation is oscillatory, if its every solution
oscillates.

The following criterion is well known: the autonomous delay equation

ẋ(t) + ax(t− r) = 0

is oscillatory if and only if ar > 1/e. For the oscillation of solutions to non-
autonomous equations we can only talk about sufficient conditions. Naturally, we
suppose that the best of oscillation tests are those for which both the essentiality of all
imposed requirements and the sharpness of all constants in inequalities are established.
The above test was first transferred to the case of non-autonomous equations by
Myshkis [15]. Below we consider oscillation tests generalizing these results.

2.1. The Koplatadze—Chanturiya theorem

Assume that the functions a and h are continuous on R+, and let h(t) ≤ t.
Consider the linear non-autonomous equation with a single delay

ẋ(t) + a(t)x(h(t)) = 0, t ∈ R+. (1)

We say that a continuously differentiable function x : R+ → R is a solution to
equation (1), if x satisfies (1) everywhere provided that for ξ ≤ 0 we have x(ξ) = φ(ξ)
for some initial function φ. It is easily seen that for any continuous function φ there is
a unique solution to (1).
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Theorem 1 ([10]). If a(t) ≥ 0, lim
t→∞

h(t) = +∞ and

lim inf
t→+∞

t∫
h(t)

a(s) ds > 1/e, (2)

then equation (1) is oscillatory.

Let us consider the hypotheses of Theorem 1. The condition ak(t) ≥ 0 means
that equations under consideration are those of stable type. The condition lim

t→∞
h(t) =

+∞ was for the first time introduced by Myshkis as a weakening of the condition of
the boundedness of delay. Myshkis showed the essentiality of this condition, therefore
below we will call it and its analogues for equations of more general form the Myshkis
condition. The last few decades, as a rule, researchers of asymptotics of delay differential
equations have imposed it without any explanation. The main condition of Theorem 1
is the inequality (2). The case of the autonomous equation shows that the constant
1/e in (2) is sharp, i.e. it cannot be diminished. Moreover, the strict inequality (2)
cannot be replaced by the nonstrict one. However, one can refine the left-hand side
of the inequality and make oscillation conditions to be applicable to wider classes
of equations. The number of papers devoted to refinements and generalizations of
Theorem 1 is growing every year.

2.2. The equation with several delays

One of the main directions of generalizations of Koplatadze—Chanturiya theorem
is the transfer of the result to equations with several delays.

Consider the equation

ẋ(t) +
m∑
k=1

ak(t)x(hk(t)) = 0, t ∈ R+, (3)

where it is assumed that the functions ak and hk are piecewise continuous, and hk(t) ≤ t,
k = 1, n. By analogy with equation (1), we suppose that a solution to equation (3) is a
continuously differentiable function x : R+ → R that satisfies (3) for some continuous
initial function φ : (−∞, 0] → R+.

Futher, we everywhere suppose that ak(t) ≥ 0, that is equation (3) is of stable type,
and that the Myshkis condition lim

t→∞
hk(t) = +∞ is fulfilled, k = 1,m.

Since equation (1) is a special case of (3), there is a natural desire to generalize
Theorem 1 to equation (3). First, consider the autonomous equation

ẋ(t) +
m∑
k=1

akx(t− rk) = 0. (4)
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Theorem 2 ([13]). For equation (4) to be oscillatory it is sufficient that

m∑
k=1

akrk > 1/e. (5)

Now, by virtue of Theorems 1 and 2, it is natural to set the following

Problem. Is it true that if

lim inf
t→+∞

m∑
k=1

t∫
hk(t)

ak(s) ds > 1/e, (6)

then equation (3) is oscillatory?

In fact, Problem was not explicitly posed in literature; nevertheless, since 1982 many
attempts have been made to bring sufficient oscillation conditions for equation (3) as
close as possible to the inequality (6). However, the answer to the question in Problem
is negative, which was shown by a counterexample in the recent paper [6].

The simplest way to generalize Theorem 1 to the case of equation (3) is to take
an interval of integration small enough to be contained in all the intervals [hk(t), t],
k = 1,m. Results of this kind are deduced from the following special case of the Myshkis
theorem on the comparison of solutions [16, p. 177].

Theorem 3. If equation (3) is oscillatory and ãk(t) ≥ a(t) ≥ 0, h̃k(t) ≤ h(t), k = 1,m,
then the equation

ẋ(t) +
m∑
k=1

ãk(t)x(h̃k(t)) = 0, t ∈ R+,

is also oscillatory.

The following fact is obtained immediately from Theorems 1 and 3.
Denote g(t) = max

k∈{1,...,m}
sup
s∈[0,t]

hk(s).

Corollary 1. If

lim inf
t→∞

t∫
g(t)

m∑
k=1

ak(s) ds > 1/e,

then equation (3) is oscillatory.

Remark 1. The result equivalent to Corollary 1 was apparently first set in [8].
Unfortunately, contemporary authors do not read works by Myshkis, so they have
to derive consequences of his results from scratch.
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Corollary 1 has an evident weakness: the effect of relatively large delays on the
oscillation is not taken into account; e. g., if hk(t) = t for some k, then the result
completely loses force.

3. Three approaches to testing oscillation

In this section we consider the most effective of the known approaches to
generalizing Theorems 1 and 2 to the case of equation (3).

3.1. Iterative method

Consider a fruitful approach, which allows to refine the hypotheses in Corollary 1
and take into account the effect of all delays on the oscillation of equation (3). It
consists in constructing an iterative sequence of statements such that each of them
refines oscillation conditions presented in the previous one. This approach goes back
to paper [11] by Koplatadze and Kvinikadze. In works of other authors it has been
developed only since 2016.

Denote P0(t, s) = 1 and

Pn(t, s) = exp


t∫

s

m∑
k=1

ak(ζ)Pn−1(ζ, hk(ζ)) dζ

 , n ∈ N. (7)

Lemma 1 ([3]). If a solution x of (3) is positive for t ≥ t0, then there exists t1 ≥ t0
such that for all n ∈ N and t ≥ s ≥ t1 we have

x(t)Pn(t, s) ≤ x(s).

Theorem 4 ([5]). If for some n ∈ N the inequality

lim inf
t→∞

t∫
g(t)

m∑
k=1

ak(s)Pn(g(s), hk(s)) ds > 1/e, (8)

is true, then equation (3) is oscillatory.

If one replaces g(s) by g(t) in (8), then Theorem 4 turns into Theorem 6 from [3],
which is erroneous, see [5]. There are corrected versions of [3] published at arXiv.org
in 2017 and 2019.

It is possible to increase the left-hand side in the inequality (8) at the cost of
increasing the number of integrals in (8) or (7). Such a refinement of Theorem 4 is
presented, e. g., in [4]. It is curious that the incorrect Theorem 6 from [3] is quoted
in [4] as well as in some other papers, results of which would be useless if this theorem
were true. However, there are many absurdities in works of recent years on the topic
under discussion.
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3.2. Change of integration sets

Consider another recent approach to the refinement and generalization of
Theorem 1. For k = 1,m define families of sets

Ek(t) = {s ≥ t : hk(s) < t}, t ∈ R+.

For what follows, we extend the class of equations (3). Assume that the functions
ak are locally integrable, the functions hk are Lebesgue measurable, and hk(t) ≤ t for
almost all t ∈ R+, k = 1,m. Below we mean that a solution to equation (3) is a locally
absolutely continuous function x : R+ → R that satisfies (3) almost everywhere on R+.
It is easily seen (see, e. g., [1, Ch. 1]) that for any given bounded Borel initial function
φ : (−∞, 0] → R provided that x(ξ) = φ(ξ), ξ ≤ 0, and initial value x(0) there exists
a unique solution to equation (3).

We set ak(t) ≥ 0 for almost all t ∈ R+, and hk(t) → ∞ as t → ∞ essentially, that
is for t defined in some M ⊂ R+ such that µ(R \M) = 0.

Theorem 5 ([7]). If

lim inf
t→∞

m∑
k=1

∫
Ek(t)

ak(s) ds > 1/e,

then equation (3) is oscillatory.

Theorem 5 is significantly stronger than Theorem 1 even in the case m = 1, see [7].

Corollary 2. If the functions hk are continuous and strictly increasing to infinity on
R+, k = 1,m, and

lim inf
t→∞

m∑
k=1

∫ h−1
k (t)

t

ak(s) ds > 1/e,

then equation (3) is oscillatory.

Corollary 3 ([14]). If hk(t) = t− rk, where rk = const > 0, k = 1,m, and

lim inf
t→∞

m∑
k=1

∫ t+rk

t

ak(s) ds > 1/e, (9)

then equation (3) is oscillatory.

Note that if m > 1, then, in general,

lim inf
t→∞

m∑
k=1

∫ t+rk

t

ak(s) ds ̸= lim inf
t→∞

m∑
k=1

∫ t

t−rk

ak(s) ds.

If one replaces the intervals of integration [t, t+ rk] by [t− rk, t] in (9), then (9) turns
into a special case of (6), and Corollary 3 turns into an erroneous statement, see [6].
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However, in some papers Theorem 5 from [14], which is the same as Corollary 3, is
quoted with this incorrect replacement.

There is a question, is it possible to apply to Theorem 5 an iterative approach similar
to that described in subsection 3.1. In this regard, we note that iterative refinements of
Theorem 1 and Corollary 1 take place due to the fact that these propositions are
insensitive to the non-monotonicity of the functions h and hk. It is not the case
for Theorem 5, which takes into account all the values of all delays. If an iterative
generalization of Theorem 5 is possible, then it requires a more subtle approach.

3.3. The Hunt—Yorke theorem

The following result stands apart among lower-limit oscillation conditions for (3).

Theorem 6 ([9]). If the functions ak and hk are continuous, the functions rk(t) =
t− hk(t) are bounded, ak(t), rk(t) > 0, k = 1,m, and

lim inf
t→+∞

m∑
k=1

ak(t)rk(t) >
1

e
,

then equation (3) is oscillatory.

Theorem 6, like Theorems 4 and 5, generalize Theorem 2. The conditions in
Theorem 6 can be called pointwise, in contrast to integral conditions like those
of Theorems 1, 4 and 5. Surprisingly, Theorem 6, which is quoted in a large number of
works, has in fact not been compared in strength with integral conditions of oscillations.

Note that one of the hypotheses of Theorem 6 assumes that delays are limited.
This condition is essentially used in the proof given by the authors in [9]. The natural
question of whether it is possible to replace the condition of limited delays by the
Myshkis condition, that is, apparently, has not yet been posed in literature. We do not
answer this question here, but we can conjecture that this weakening of the assumptions
of Theorem 6 is correct.

4. Comparison of oscillation tests

In this section we compare with each other the classes of equations of the form (3)
with parameters satisfying the hypotheses of Theorems 4, 5 and 6. We call these classes
the domains of applicability of the theorems. We give a number of examples showing
that for each of Theorems 4, 5 and 6 its domain of applicability is not included into that
of any of the other two theorems even in the case of a single delay. The results of this
section are valid regardless of whether we consider equation (3) under the assumptions
of subsection 2.2 or those of subsection 3.2.

The easiest case of our task is to show that the domain of applicability of Theorem 5
is not included into any of those of Theorems 4 and 6. For this end, it is sufficient to
consider an equation with periodically vanishing delay.
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Consider the equation

ẋ(t) + a(t)x(t− r(t)) = 0, t ∈ R+, (10)

and denote g(t) = sup
s∈[0,t]

(s− r(s)).

Example 1. Set in equation (10) a(t) ≡ 1 and

r(t) =

{
1, t ∈ [n, n+ 1/2);

0, t ∈ [n+ 1/2, n+ 1);
n = 0, 1, 2, . . .

We have

lim inf
t→∞

∫
E(t)

a(s) ds =

∫ n+1/2

n

a(s) ds = 1/2 > 1/e;

lim inf
t→∞

a(t)r(t) = lim inf
t→∞

∫ t

g(t)

a(s)Pn(g(s), h(s)) ds = 0 < 1/e.

Thus, the equation is oscillatory by Theorem 5, but it cannot be established by any of
Theorems 4 and 6.

The following example shows that the domain of applicability of Theorem 6 is not
included into any of those of Theorems 4 and 5.

Example 2. Consider equation (10), where for n = 0, 1, 2, . . . set

a(t) =

{
1/3, t ∈ [3n, 3n+ 2);

2/3, t ∈ [3n+ 2, 3(n+ 1));
r(t) =

{
2, t ∈ [3n, 3n+ 2);

1, t ∈ [3n+ 2, 3(n+ 1)).

We have
lim inf
t→∞

a(t)r(t) = 2/3 > 1/e;

however,

lim inf
t→∞

∫ t

g(t)

a(s)Pn(g(s), h(s)) ds =

∫ 3n+2

g(3n+2)

a(s)Pn(g(s), h(s)) ds

=

∫ 3n+2

3n+1

a(s) ds = 1/3 < 1/e,

and

lim inf
t→∞

∫
E(t)

a(s) ds =

∫
E(3n+1)

a(s) ds =

∫ 3n+2

3n+1

a(s) ds = 1/3 < 1/e.

Thus, the equation is oscillatory by Theorem 6, but it cannot be established by any of
Theorems 4 and 5.
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At last, the following example shows that the domain of applicability of Theorem 4
is not included into any of those of Theorems 5 and 6.

Example 3. Consider equation (10), where a(t) = 1/e, and for n = 0, 1, 2, . . . we put

h(t) = t− r(t) =


t− 2, t ∈ [4n, 4n+ 2);

4n− 1, t ∈ [4n+ 2, 4n+ 3);

4n+ 2, t ∈ [4n+ 3, 4(n+ 1)).

One can see that

lim inf
t→+∞

∫
E(t)

a(s) ds =

∫
E(4n+2)

a(s) ds =

∫ 4n+3

4n+2

a(s) ds = 1/e,

and
lim inf
t→+∞

a(t)r(t) = a(4n+ 3)r(4n+ 3) = (1/e) · 1 = 1/e.

However,

lim inf
t→+∞

∫ t

g(t)

a(s)P1(g(s), h(s)) ds = lim inf
t→+∞

∫ t

g(t)

a(s) exp

(∫ g(s)

h(s)

a(τ) dτ

)
ds

=

∫ 4n+3

4n+2

a(s) exp

(∫ g(s)

h(s)

a(τ) dτ

)
ds >

∫ 4n+3

4n+2

a(s) ds = 1/e.

Thus, equation (10) is oscillatory, which is established by Theorem 4 and cannot be
established by any of Theorems 5 and 6.

5. Conclusion

We have examined a class of sufficient conditions for the oscillation of all solutions
to linear non-autonomous differential equations of first order with several delays, which
is called a class of lower-limit oscillation tests. For our analysis, we have chosen three
approaches to constructing such tests, which we consider to be the most effective.

As to the generalization and refinement of the represented results, we can say the
following. The iterative oscillation tests allow refinement at the cost of a significant
complication of formulas (7) and (8) [4]. The Hunt—York approach was tranferred to
the case of equations with distributed delay in [2]. Generalizations of Theorem 5 are
currently unknown.

There are other approaches to oscillation testing. In particular, it should be noted
that oscillation conditions can be formulated in terms of estimates for not the lower,
but the upper limit of a functional of equation parameters. Moreover, the iterative
approach was first developed in [11] specifically for this kind of oscillation tests.
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