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Abstract. Starting from dimension 4, so-called non-smoothed manifolds, manifolds that do not
allow triangulation and other obstacles that prevent the use of the technique of smooth manifolds
for the study of multidimensional manifolds appear. In addition, all methods for studying smooth
dynamical systems on multidimensional manifolds are based on the approximation of all subsets by
piecewise linear or topological objects. In this regard, the idea of consideration of dynamical systems on
multidimensional manifolds that do not use the concept of smoothness in their definition is completely
natural. So homeomorphisms and topological Morse-Smale flows, which are also firmly connected with
the topology of the ambient manifold, as well as their smooth analogues, have already entered into
scientific usage. In the present paper we investigate general dynamical properties of homeomorphisms
and topological flows with a finite hyperbolic chain recurrent set.
Keywords: topological flow, chain-recurrent set, hyperbolic set

1. Introduction and formulation of results

Let Mn be a closed n-dimensional manifold with metric d. A topological flow on
Mn is a family of homeomorphisms f t : Mn →Mn that continuously depends on t ∈ R
and satisfies the following conditions:

1) f 0(x) = x for any point x ∈Mn;

2) f t(f s(x)) = f t+s(x) for any s, t ∈ R, x ∈Mn.

The trajectory or the orbit of a point x ∈Mn is the set Ox = {f t(x), t ∈ R(Z)}. It is
believed that the trajectories of the flow (homeomorphism) are oriented in accordance
with an increase in the parameter t. Any two trajectories of a dynamical system either
coincide or do not intersect, therefore, the phase space is represented as a union of
pairwise disjoint trajectories. There are three types of trajectories:

1) fixed point Ox = {x};
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2) periodic trajectory (orbit) Ox for which there exists a number per(x) > 0
(per(x) ∈ N) such that fper(x)(x) = x, but f t(x) ̸= x for all real (natural)
numbers 0 < t < per(x). The number per(x) is called period of a periodic orbit
and does not depend on the choice of a point in orbit;

3) regular trajectory Ox — a trajectory that is not a fixed point or a periodic orbit.

To characterize the wandering of the trajectories of a dynamical system, the concept
of chain recurrence is traditionally used.

The ε-chain of length T connecting the point x with the point y for the flow f t

is called a sequence of points x = x0, . . . , xn = y for which there exists a sequence of
times t1, . . . , tn such that d(f ti(xi−1), xi) < ε, ti ≥ 1 for 1 ≤ i ≤ n and t1+ · · ·+ tn = T .

The ε-chain of length n connecting the point x with the point y for a
homeomorphism f is called a sequence of points x = x0, . . . , xn = y, such that
d(f(xi−1), xi) < ε for 1 ≤ i ≤ n.

A point x ∈Mn is said to be chain recurrent for the flow f t (cascade f), if for any
ε > 0 there is T (n), which depends on ε > 0, and there is an ε-chain of the length
T (n) from the point x to itself. The set of chain recurrent points of f t (f) is called the
chain recurrent set of f t (f) denoted by Rf t (Rf ) and its connected components are
called chain components. The set Rf t (Rf ) is f t (f) - invariant, that is, it consists of
the orbits of the flow (homeomorphism) f t ( f), which are called chain recurrent. It is
obvious that fixed points and periodic orbits are chain recurrent.

As a model behavior of flow (homeomorphism) in a neighborhood of a fixed point,
we consider a linear flow (homeomorphism) atλ : Rn → Rn (aλ : Rn → Rn), λ ∈
{0, 1, ..., n} of the following form:

atλ(x1, ..., xλ, xλ+1, ..., xn) = (2tx1, ..., 2
txλ, 2

−txλ+1, ..., 2
−txn)

(aλ(x1, ..., xλ, xλ+1, ..., xn) = (±2x1, 2x2, ..., 2xλ,±2−1xλ+1, 2
−1xλ+2, ..., 2

−1xn)).

A fixed point p of a flow (homeomorphism) f t (f) is called is topologically
hyperbolic if there exists a neighborhood Up ⊂ Mn, a number λ ∈ {0, 1, ..., n} and
a homeomorphism hp : Up → Rn such that hpf t|Up = atλphp|Up (hpf |Up = aλphp|Up)
whenever the left and right sides are defined. Let

Es
λ = {(x1, ..., xn) ∈ Rn : x1 = · · · = xλ = 0},

Eu
λ = {(x1, ..., xn) ∈ Rn : xλ+1 = · · · = xn = 0}.

The number λp is called the index of the fixed hyperbolic point p. A point of
indexes n and 0 will be called source and sink, respectively; any point p such that
λp ∈ {1, · · · , n − 1} is called saddle. For a topologically hyperbolic fixed point p of
the flow (homeomorphism) f t (f) the sets h−1

p (Es
λp
), h−1

p (Eu
λp
) are called local stable,

unstable manifolds.
The sets

W s
p =

∪
t∈R

f t(h−1
p (Es

λp)), W
u
p =

∪
t∈R

f t(h−1
p (Eu

λp))
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is called stable and unstable invariant manifolds of the point p.
If p is a periodic point of a period k for diffeomorphism f then its invariant manifolds

and the index are defined as for fixed point fk(p) with respect to the homeomorphism
fk. The number λOp which equals λp is called index of the orbit Op of the periodic
point p.

Statement 1. The unstable W u
p and the stable W s

p manifolds of the hyperbolic fixed
point p are independent of the choice of the local homeomorphism hp and are defined
in topological terms as follows: W u

p = {y ∈ Mn : lim
t→+∞

f−t(y) = p} и W s
p = {y ∈ Mn :

lim
t→+∞

f t(y) = p}.

It follows from Statement 1 that W u
p ∩W u

q = ∅ and W s
p ∩W s

q = ∅ for any different
hyperbolic points p, q.

Denote by G a class of homeomorphisms and topological flows given on Mn with a
finite hyperbolic chain recurrent set.

Let F ∈ G. The dynamics of systems of this class are close in their properties to
gradient-like systems (see, for example, [4], [2]). Namely, similar to S. Smale’s order
[5], we introduce a partial order relation on the set of chain-recurrent orbits of the
dynamical system F by the condition

Oi ≺ Oj ⇐⇒ W s
Oi

∩W u
Oj

̸= ∅,

where Oi,Oj are orbits from the set RF and W s
Oi

=
∪
p∈Oi

W s
p , W u

Oi
=
∪
p∈Oi

W u
p .

A m-cycle (m ≥ 1) is a collection O1,O2, · · · ,Om of pairwise disjoint chain
recurrent orbits that satisfy the condition O1 ≺ O2 ≺ · · · ≺ Om ≺ O1.

Statement 2. Every dynamical system F ∈ G has no cycles.

Due to Statement 2 the introduced relation can be continued (not uniquely) to a
complete order relation, that is for every chain recurrent orbits Oi, Oj either Oi ≺ Oj,
or Oj ≺ Oi. Thus, let us consider the orbits of a dynamical system F ∈ G numbered
in accordance with the introduced order:

O1 ≺ · · · ≺ Ok.

In addition, without loss of generality, we assume that any sink orbit is located in this
order below any saddle orbit, and any source orbit is higher than any saddle one.

The main result of the present paper is the following fact.

Theorem 1. Let F ∈ G. Then

(1) Mn =
k∪
i=1

W u
Oi

=
k∪
i=1

W s
Oi

;

(2) W u
Oi

(W s
Oi
) s a topological submanifold of Mn, homeomorphic to RλOi (Rn−λOi );
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(3) (cl(W u
Oi
) \W u

Oi
) ⊂

i−1∪
j=1

W u
Oj

((cl(W s
Oi
) \W s

Oi
) ⊂

k∪
j=i+1

W s
Oj
).

Notice that a similar result for Morse-Smale diffeomorphisms was proved in [3] and
for Morse-Smale homeomorphism was proved in [1].

2. Auxilary facts

In this section we prove announced statements.
Proof of Statement 1.

Proof. Let us prove that if F ∈ G and p is a fixed point of the system F , then W u
p and

W s
p are independent of the choice of the local homeomorphism hp.
Suppose for definiteness that F is a homeomorphism f (for a flow the proof

is similar). Let h̃p : Ũp → Rn be a homeomorphism different from hp and such
that h̃pf |Ũp

= aλ̃ph̃p|Ũp
whenever the left and right sides are defined. Then in a

neighborhood UO of the original point O in Rn is well-defined a homeomorphism
h = hph̃

−1
p which conjugates aλp with aλ̃p . As conjugating homeomorphism preserves

the invariant manifolds then λ̃p = λp and h(Es
λp
) = Es

λp
, h(Eu

λp
) = Eu

λp
. Thus,

h̃−1
p (Es

λp
) = h−1

p (h(Es
λp
)) = h−1

p (Es
λp
). It is the same for Eu

λp
.

Proof of Statement 2.

Proof. We will prove that every dynamical system F ∈ G has no cycles.
Suppose the contrary: there exists a sequence of orbits O1 ≺ · · · ≺ Om ≺ O1. By

construction, any point of the set
m∪
i=1

(W s
Oi

∩ W u
Oi+1

), where Om+1 = O1, is a chain

recurrent. It immediately contradicts with the finiteness of the chain recurrent set of
the system F .

Statement 3. Every homeomorphism f = f 1, which is the one-time shift of a flow
f t ∈ G belongs to the class G. Moreover, Rf t = Rf and W u

p (f
t) = W u

p (f), W s
p (f

t) =
W s
p (f) for every chain recurrent point p.

Proof. It immediately follows from the definition of hyperbolic point that Rf t ⊂ Rf .
Let us show that Rf ⊂ Rf t . Let p ∈ Rf , then there exists a ε-chain of length n
connecting the point p with itself. Then the point p will also be a chain recurrence
point for the flow f t, since it has a ε-chain of length T = n, and ti = 1 (i = 1;n)
connecting the point p with itself.

It follows from the uniqueness of the invariant manifolds of a chain recurrent point,
proved in Statement 1, that W u

p (f
t) = W u

p (f), W s
p (f

t) = W s
p (f) for every chain

recurrent point p.
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3. General dynamical properties of systems from class G

In this section, we prove Theorem 1 on the embedding and asymptotic behaviour
of invariant manifolds of chain recurrent points of a dynamical system from class
G. Due to Statement 3, it is enough to prove the theorem for the case when the
dynamical system F is a homeomorphism f . Moreover we can suppose (by changing
of f by some power of f) that chain recurrent set consists of the fixed points, that is
Oi = pi and f |Upi

is conjugated with the diffeomorphism aλpi (x1, ..., xλ, xλ+1, ..., xn) =
(2x1, 2x2, ..., 2xλ, 2

−1xλpi+1, 2
−1xλpi+2, ..., 2

−1xn)) by means a homeomorphism hpi .
A fixed point p of a flow (homeomorphism) f t (f) is called is topologically

hyperbolic if there exists a neighborhood Up ⊂ Mn, a number λ ∈ {0, 1, ..., n} and
a homeomorphism hp : Up → Rn such that hpf t|Up = atλphp|Up (hpf |Up = aλphp|Up)
whenever the left and right sides are defined..

Below we prove each item of the theorem in a separate subsection.
All statements formulated for unstable manifolds hold for stable manifolds as well.

One gets them if one formally changes “u” to “s” because Rf = Rf−1 and stable
manifolds of chain recurrent points for f are the unstable manifolds of the chain
recurrent points for f−1.

3.1. Representation of the ambient manifold as the union of the invariant
manifolds of the periodic points

Proof of the item (1) of Theorem 1.

Proof. Now we prove that Mn =
k∪
i=1

W u
pi

for every homeomorphism f ∈ G.

Let x ∈ Mn. Let us recall that a point y ∈ Mn is called an α-limit point for the
point x if there is a sequence tn → −∞, tn ∈ Z such that

lim
tn→−∞

d(f tn(x), y) = 0.

The set α(x) of all α-limit points for the point x is called the α-limit set of x. As
Mn is compact then the set α(x) is not empty. Let us show that α(x) ⊂ Rf . Indeed,
as f is uniformly continuous and lim

tn→−∞
d(f tn(x), y) = 0, for every ε > 0 there is

nε ∈ N such that d(f tn(x), y) < ε and d(f tn+1(x), f(y)) < ε for every n ≥ nε. Thus,
y, f(y), f tn+1(x), f tn+2(x), . . . , f tn+1(x), y is the ε-chain connected y with itself.

We show that α(x) consists of exactly one fixed point which depends on x. Assume
the contrary i.e there are distinct fixed points pv, pw ∈ α(x). Since Rf is finite there
is a ρ > 0 such that d(pi, pj) > ρ whenever i ̸= j. Denote Vi = {y ∈ Mn : d(y, pi) <
ρ
3
}. Since all the points pi, i = 1, k are fixed there is a neighborhood Ui such that
cl(Ui) ⊂ Vi and f−1(cl(Ui)) ∩ Vj = ∅ for every j ̸= i. By the assumption there is an
increasing sequence qℓ of the iterations of f−1 such that f−q2m(x) ∈ Uv, f−q2m+1(x) ∈ Uw
and q2m+1 − q2m ≥ 2. We pick the sequence nm so that nm is the maximal natural
number belonging to the interval (q2m, q2m+1) for each f−(nm−1)(x) ∈ cl(Uv). Then
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f−nm(x) /∈ cl(Uv). On the other hand f−nm(x) = f−1(f−(nm−1)(x)) /∈ Vj for j ̸= v and

hence f−nm(x) ∈ (Mn \
k∪
i=1

Ui). But then α(x) is not a subset of Rf and we have a

contradiction.
Thus for each point x ∈ Mn there is the unique point pv(x) ∈ Rf such that

α(x) = pv(x), i.e. there is a sequence kn → +∞ such that lim
kn→+∞

d(f−kn(x), pv(x)) = 0.

It follows from the definition of the hyperbolic fixed point that f−kn(x) ∈ W u
pv(x)

for all
n greater then some n0. Then x ∈ W u

pv(x)
because the unstable manifold is invariant.

3.2. Embedding of the invariant manifolds of periodic points into the
ambient manifold

To prove item (2) of Theorem 1 we need the following lemma.

Lemma 1. Let σ be a hyperbolic saddle fixed point of a diffeomorphism f ∈ G, let
Tσ ⊂W s

σ be a compact neighborhood of the point σ and ξ ∈ Tσ. Then for every sequence
of points {ξm} ⊂ (Mn \ Tσ) converging to the point ξ there are a subsequence {ξmj

},
a sequence of natural numbers kmj

→ +∞ and a point η ∈ (W u
σ \ σ) such that the

sequence of points {fkmj (ξmj
)} converges to the point η.

Proof. Without loss of generality one assumes (Uσ ∩W s
σ) ⊂ Tσ, ξ ∈ (Uσ ∩ f(Uσ)) and

{ξm} ⊂ (Uσ∩f(Uσ)). We pick a number r > 0 so that the ball Br(O) = {(x1, . . . , xn) ∈
Rn : (x21 + · · ·+ x2n) ≤ r} would be a subset of the set hσ(Uσ).

Let hσ(ξm) = ξ̄m = (ξ̄1,m, . . . , ξ̄λσ ,m, ξ̄λσ+1,m, . . . , ξ̄n,m). The set Ku =

{(x1, . . . , xλσ) ∈ Ox1 . . . xλσ : r2

4
≤ x21 + · · · + x2λσ ≤ r2} is a fundamental domain of

the restriction of the diffeomorphism aλσ to Ox1 . . . , xλσ \ O. Then for every m ∈ N
there is the unique integer km such that r2

4
≤ 4km

(
(ξ̄1,m)

2 + · · ·+ (ξ̄λσ ,m)
2
)
< r2. Let

η̄m = akmλσ ,+1(ξ̄m). Since lim
m→∞

ξ̄m = hσ(ξ) ∈ (Oxλσ+1 . . . xn \O) for every i ∈ {1, . . . , λσ}
the limit lim

m→∞
ξ̄i,m equals 0 and hence lim

m→∞
km = +∞. Furthermore the sequence {ξ̄i,m}

is bounded for every i ∈ {λσ+1, . . . , n} and hence η̄i,m =
(
1
2

)km
ξ̄i,m → 0 for m→ +∞

and i ∈ {λσ + 1, . . . , n}.
Therefore the coordinates of the points η̄m = (η̄1,m, . . . , η̄n,m) satisfy r2

4
≤ (η̄1,m)

2 +
· · ·+ (η̄λσ ,m)

2 < r2 for i ∈ {1, . . . , λσ} and η̄i,m → 0 as m→ ∞ for i ∈ {λσ + 1, . . . , n},
i.e. the points ηm are inside some compact subset of Rn. Since any sequence of points
of a compact set has a converging subsequence, there are a subsequence {kmj

} of
the sequence {km} and a point η̄ ∈ (W u

O \ O) such that lim
j→∞

η̄mj
= η̄. Then ξmj

=

h−1
σ (a

−kmj

λσ
(η̄mj

)) is the desired subsequence.

Proof of item (2) of Theorem 1

Proof. Here we prove that W u
pi

is a submanifold of the manifold Mn, homeomorphic to
Rλpi .
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Let Tpi = hpi(E
u
λpi

). Then for every point x ∈ W u
pi

there is a natural number nx
such that x ∈ f−nx(Tpi). Let Tpi(x) = f−nx(Tpi) then there is a chart ψx : Ux → Rn

of the manifold Mn such that ψx(Ux ∩ Tpi(x)) = Rλpi . If λpi = n or λpi = 0 then
ψx(Ux ∩ Tpi(x)) = ψx(Ux ∩W u

pi
). Therefore the unstable manifold of every node point

is a smooth submanifold.
Now we show that W u

pi
is a submanifold of Mn homeomorphic to Rλpi for every

saddle point pi as well. Suppose the contrary: W u
pi

is not a submanifold of Mn. Then
there is a point x ∈ W u

pi
such that (Ux \Tpi(x))∩W u

pi
̸= ∅ for every chart ψx : Ux → Rn

of the manifold Mn for which ψx(Ux ∩ Tpi(x)) = Rλpi . Hence there is a sequence
{xm} ⊂ (W u

pi
\ Tpi(x)) such that d(xm, x) → 0 for m→ +∞.

Lemma 1 gives us that there is a subsequence xmj
and there is a sequence kj such

that the sequence yj = f−kj(xmj
) ⊂ W u

pi
converges to a point y ∈ (W s

pi
\ pi).

According to the item (1) of Theorem 1 there is a point pv ∈ Rf such that y ∈ W u
pv .

Consider three possibilities: [a] dimW u
pv = 0; [b] 0 < dimW u

pv < n; [c] dimW u
pv = n.

[a] If dimW u
pv = 0 then yj ∈ W u

pv for all j starting from some one. Hence, i = v and
y is a homoclinic point, that contradicts to Statement 2. Thus case [a] is impossible.

[c] If dimW u
pv = n then W u

pv = pv and y = pv, that contradicts to the condition
y ∈ W s

pi
. Thus case [c] is impossible.

[b] If 0 < dimW u
pv < n then v > i as f has no homoclinic points. According to

Lemma 1 there is a subsequence {yjr}, a sequence mr → +∞ and a point z ∈ W s
pv such

that the sequence {fmr(yjr)} converges to the point z. As Mn =
k∪
i=1

W u
pi

then z ∈ W u
pw .

Similarly to above arguments, v ̸= j, v ̸= i and 0 < dimW u
pw < n. Due to finiteness of

the set Rf the case [b] is also impossible.
Thus, W u

pi
is a topological submanifold of the manifold Mn homeomorphic to Rλpi .

3.3. Asymptotic behaviour of the invariant manifolds of chain recurrent
points

Proof of the item (3) of Theorem 1

Proof. Now we prove that (cl(W u
pi
) \W u

pi
) ⊂

i−1∪
j=1

W u
pj

.

If pi is a sink then the set cl(W u
pi
)\W u

pi
is empty and the statement is automatically

true. In the other cases let us consider a point x ∈ (cl(W u
pi
) \ W u

pi
) and prove that

x ∈ W u
pv for some v < i.

Indeed, as x ∈ (cl(W u
pi
) \ (W u

pi
∪ pi)) then there is a sequence {xm} ⊂ W u

pi
such that

d(xm, x) → 0 form→ +∞. By item (1) of Theorem 1, x ∈ W u
pv for some v ∈ {1, . . . , k}.

There are three possibilities: (a) pv is a sink, (b) pv is a saddle, (c) pv is a source.
In the case (c) xm ∈ W u

pv for all m large enough. But then pv = pi and x ∈ W u
pi

that contradicts the assumption.
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In the case (a) W u
pv = pv, x = pv and xm ∈ W s

pv for all m large enough. Then
W u
pi
∩W s

pv ̸= ∅ and v < i is true.
In the case (b) by Lemma 1 there are a subsequence xmj

and a sequence kj such
that the sequence yj = f−kj(xmj

) converges to a point y ∈ (W s
pv \pv). By the item (1) of

Theorem 1 there is a point pw ∈ Rf such that y ∈ W u
pw , that is pv ≺ pw. If w = i then

the statement is true. If not then arguing as above we get that the point pw cannot be
a source. The point pw is evidently not a sink because pv is a saddle point. Thus, the
point pw is a saddle different from pv. Repeating the process, taking into account the
finiteness of Rf and the absence of cycles, we obtain the statement in a finite number
of steps.
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