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Abstract. Starting from dimension 4, so-called non-smoothed manifolds, manifolds that do not
allow triangulation and other obstacles that prevent the use of the technique of smooth manifolds
for the study of multidimensional manifolds appear. In addition, all methods for studying smooth
dynamical systems on multidimensional manifolds are based on the approximation of all subsets by
piecewise linear or topological objects. In this regard, the idea of consideration of dynamical systems on
multidimensional manifolds that do not use the concept of smoothness in their definition is completely
natural. So homeomorphisms and topological Morse-Smale flows, which are also firmly connected with
the topology of the ambient manifold, as well as their smooth analogues, have already entered into
scientific usage. In the present paper we investigate general dynamical properties of homeomorphisms
and topological flows with a finite hyperbolic chain recurrent set.
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1. Introduction and formulation of results

Let M"™ be a closed n-dimensional manifold with metric d. A topological flow on
M™ is a family of homeomorphisms f!: M™ — M™ that continuously depends on t € R
and satisfies the following conditions:

1) f%x) =z for any point z € M™;
2) ft(fs($)) = f"*5(x) for any s,t € R, x € M".

The trajectory or the orbit of a point x € M™ is the set O, = {f*(z),t € R(Z)}. Tt is
believed that the trajectories of the flow (homeomorphism) are oriented in accordance
with an increase in the parameter t. Any two trajectories of a dynamical system either
coincide or do not intersect, therefore, the phase space is represented as a union of
pairwise disjoint trajectories. There are three types of trajectories:

1) fized point O, = {z};
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2) periodic trajectory (orbit) O, for which there exists a number per(z) > 0
(per(z) € N) such that fPr@(z) = z, but fi(xr) # = for all real (natural)
numbers 0 < ¢ < per(x). The number per(z) is called period of a periodic orbit
and does not depend on the choice of a point in orbit;

3) regular trajectory O, — a trajectory that is not a fixed point or a periodic orbit.

To characterize the wandering of the trajectories of a dynamical system, the concept
of chain recurrence is traditionally used.

The e-chain of length T connecting the point x with the point y for the flow f*
is called a sequence of points © = xg,...,x, = y for which there exists a sequence of
times t1, . .., t, such that d(f'(x;_1),x;) <e, t; > 1for 1 <i<mnandt;+---+t,="T.

The e-chain of length n connecting the point x with the point y for a
homeomorphism f is called a sequence of points * = xg,...,x, = y, such that
d(f(zi1), ;) <efor 1 <i<n.

A point x € M™ is said to be chain recurrent for the flow f* (cascade f), if for any
e > 0 there is T'(n), which depends on ¢ > 0, and there is an e-chain of the length
T'(n) from the point z to itself. The set of chain recurrent points of f* (f) is called the
chain recurrent set of f* (f) denoted by Ry (Ry) and its connected components are
called chain components. The set Ry (Ry) is f* (f) - invariant, that is, it consists of
the orbits of the flow (homeomorphism) f* (' f), which are called chain recurrent. It is
obvious that fixed points and periodic orbits are chain recurrent.

As a model behavior of flow (homeomorphism) in a neighborhood of a fixed point,
we consider a linear flow (homeomorphism) af : R* — R" (a) : R* — R"),\ €
{0,1,...,n} of the following form:

t t t —t —t
A\ (L1 ooy Ty Tpg 1y ooy T) = (27, 00, 2700, 27 T 041, ooy 27 T)

(ax(T1y ooy Ty Tag1s ooy Tn) = (F221, 209, ..., 20, £27 01, 27 M nse, o, 27 1),

A fixed point p of a flow (homeomorphism) f* (f) is called is topologically
hyperbolic if there exists a neighborhood U, C M", a number A € {0,1,...,n} and
a homeomorphism h, : U, — R" such that h,f*[u, = @} hplu, (hpflo, = ax,hylu,)
whenever the left and right sides are defined. Let

Ey = {(%1,...,3;”) ER":qzy = :l‘)\:()},

E;L = {(.Tla ...,.Tn) cR"™: Typl =" =Ty = 0}

The number ), is called the index of the fixed hyperbolic point p. A point of
indexes n and 0 will be called source and sink, respectively; any point p such that
Ay € {1,---,n — 1} is called saddle. For a topologically hyperbolic fixed point p of
the flow (homeomorphism) f* (f) the sets h;l(Ef\p),hzjl(Ef\‘p) are called local stable,
unstable manifolds.

The sets

= £ (B3, W= | Sy (EL))

teR teR
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is called stable and unstable invariant manifolds of the point p.

If p is a periodic point of a period k for diffeomorphism f then its invariant manifolds
and the index are defined as for fixed point f*(p) with respect to the homeomorphism
f*. The number Ao, which equals A, is called index of the orbit O, of the periodic
point p.

Statement 1. The unstable W' and the stable W, manifolds of the hyperbolic fized

point p are independent of the choice of the local homeomorphism h, and are defined
in topological terms as follows: W' = {y € M™ : tliin [ y)=p} uW;={yeM":
—+00

[ fi(y) = p}-

It follows from Statement 1 that W) N W' = () and WyNnwg = () for any different
hyperbolic points p, g.

Denote by GG a class of homeomorphisms and topological flows given on M"™ with a
finite hyperbolic chain recurrent set.

Let F € (. The dynamics of systems of this class are close in their properties to
gradient-like systems (see, for example, [4], [2]). Namely, similar to S. Smale’s order
[5], we introduce a partial order relation on the set of chain-recurrent orbits of the
dynamical system F by the condition

0; < 0; = W5, NWg, #10,

where O;, O; are orbits from the set Rr and W5, = U W, Wg = U W
peQ; pe0;
A m-cycle (m > 1) is a collection 01,0y, -+ ,0,, of pairwise disjoint chain

recurrent orbits that satisfy the condition O; < Oy < --- < O,, < O;.
Statement 2. Every dynamical system F € G has no cycles.

Due to Statement 2 the introduced relation can be continued (not uniquely) to a
complete order relation, that is for every chain recurrent orbits O;, O; either O; < O,
or O; < O;. Thus, let us consider the orbits of a dynamical system F € GG numbered
in accordance with the introduced order:

01 <+ <O

In addition, without loss of generality, we assume that any sink orbit is located in this
order below any saddle orbit, and any source orbit is higher than any saddle one.
The main result of the present paper is the following fact.
Theorem 1. Let F € G. Then
k k
(1) M" = | W§, = ’glwgi;

=1

(2) W, (Wg,) s a topological submanifold of M™, homeomorphic to RAoi (R0,
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3) @Vg) \We) < U s, (we)\Ws) < U w3).

j j=i+1

Notice that a similar result for Morse-Smale diffeomorphisms was proved in [3] and
for Morse-Smale homeomorphism was proved in [1].

2. Auxilary facts

In this section we prove announced statements.
Proof of Statement 1.

Proof. Let us prove that if 7 € G and p is a fixed point of the system F, then W and
W, are independent of the choice of the local homeomorphism £,,.

Suppose for definiteness that F is a homeomorphism f (for a flow the proof
is similar). Let ﬁp : Up — R" be a homeomorphism different from £, and such
that izp f |0p = a;\pﬁp|ﬁp whenever the left and right sides are defined. Then in a
neighborhood Up of the original point O in R" is well-defined a homeomorphism
h = hpfzg ! which conjugates ay, with as, - As conjugating homeomorphism preserves
the invariant manifolds then A, = )\, and h(E;) = E, MEY) = EY . Thus,

hy '(ES) = h, ' (M(ES)) = h, '(EX)). Tt is the same for EY . O
Proof of Statement 2.

Proof. We will prove that every dynamical system F € GG has no cycles.
Suppose the contrary: there exists a sequence of orbits O; < --- < O,, < O1. By
m
construction, any point of the set |J(Wy, N W3, ), where Oy = Oy, is a chain

i=1
recurrent. It immediately contradicts with the finiteness of the chain recurrent set of

the system F. [

Statement 3. Every homeomorphism f = f1, which is the one-time shift of a flow
ft € G belongs to the class G. Moreover, Ry = Ry and W (f*) = WE(f), Wi(f') =
W3 (f) for every chain recurrent point p.

Proof. Tt immediately follows from the definition of hyperbolic point that Ry C Ry.
Let us show that Ry C Ry. Let p € Ry, then there exists a e-chain of length n
connecting the point p with itself. Then the point p will also be a chain recurrence
point for the flow f!, since it has a e-chain of length T = n, and t; = 1 (i = 1;n)
connecting the point p with itself.

It follows from the uniqueness of the invariant manifolds of a chain recurrent point,
proved in Statement 1, that W (f*) = Wi(f), Wi (f") = W;(f) for every chain
recurrent point p. O
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3. General dynamical properties of systems from class G

In this section, we prove Theorem 1 on the embedding and asymptotic behaviour
of invariant manifolds of chain recurrent points of a dynamical system from class
G. Due to Statement 3, it is enough to prove the theorem for the case when the
dynamical system F is a homeomorphism f. Moreover we can suppose (by changing
of f by some power of f) that chain recurrent set consists of the fixed points, that is
O; = p; and f|y, is conjugated with the diffeomorphism ay, (71, ..., 2x, Txi1, oy Tn) =
(221,279, ..., 205, 27 wp, 41,27 25, 42, -, 27 ) Dy means a homeomorphism hy,.

A fixed point p of a flow (homeomorphism) f* (f) is called is topologically
hyperbolic if there exists a neighborhood U, C M", a number A € {0,1,...,n} and
a homeomorphism h, : U, — R" such that h,f'[u, = @} hplv, (hpflu, = ax,hylu,)
whenever the left and right sides are defined..

Below we prove each item of the theorem in a separate subsection.

All statements formulated for unstable manifolds hold for stable manifolds as well.
One gets them if one formally changes “u” to “s” because Ry = R;-1 and stable
manifolds of chain recurrent points for f are the unstable manifolds of the chain
recurrent points for f1.

3.1. Representation of the ambient manifold as the union of the invariant
manifolds of the periodic points

Proof of the item (1) of Theorem 1.

k
Proof. Now we prove that M"™ = [J W} for every homeomorphism f € G.

i=1
Let x € M™. Let us recall that a point y € M™ is called an «a-limit point for the
point z if there is a sequence t,, — —o0, t,, € Z such that

3 tn —
i _d(f*(z),y) = 0.
The set «a(z) of all a-limit points for the point = is called the a-limit set of x. As
M™ is compact then the set a(x) is not empty. Let us show that a(z) C Ry. Indeed,
as [ is uniformly continuous and . lim d(f(x),y) = 0, for every ¢ > 0 there is
n——00

n. € N such that d(f™(z),y) < ¢ and d(f""*(z), f(y)) < € for every n > n.. Thus,
y, f(y), fi"T(x), finT2(x), ..., fi"+1(x),y is the e-chain connected y with itself.

We show that «a(z) consists of exactly one fixed point which depends on x. Assume
the contrary i.e there are distinct fixed points p,, p, € a(x). Since Ry is finite there
is a p > 0 such that d(p;,p;) > p whenever i # j. Denote V; = {y € M" : d(y,p;) <
£}. Since all the points p;, i = 1,k are fixed there is a neighborhood U; such that
c(U;) € Vi and f~1(cl(U;)) N'V; = 0 for every j # i. By the assumption there is an
increasing sequence ¢, of the iterations of f~! such that f~#m(z) € U,, f~ 2+ (x) € U,
and ¢omi1 — Gom > 2. We pick the sequence n,, so that n,, is the maximal natural
number belonging to the interval (gom,gams1) for each f~"»=Y(x) € cl(U,). Then
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fm(x) & cl(U,). On the other hand f~"=(z) = f~1(f~ "=V (x)) ¢ V; for j # v and
k

hence f~"m(x) € (M™\ | U;). But then a(x) is not a subset of R; and we have a
i=1

contradiction.
Thus for each point x € M™ there is the unique point p,(r) € R; such that
a(z) = py(z), i.e. there is a sequence k,, — 400 such that . lim d(f % (z),p.(x)) = 0.
n—>+00

It follows from the definition of the hyperbolic fixed point that f~*(x) € W () for all
n greater then some ng. Then z € W' (@) because the unstable manifold is invariant. [

3.2. Embedding of the invariant manifolds of periodic points into the
ambient manifold

To prove item (2) of Theorem 1 we need the following lemma.

Lemma 1. Let o be a hyperbolic saddle fixed point of a diffeomorphism f € G, let
T, C W7 be a compact neighborhood of the point o and § € T,,. Then for every sequence
of points {{m} C (M™\ T,) converging to the point £ there are a subsequence {&m,},
a sequence of natural numbers ky,, — 400 and a point n € (W} \ o) such that the
sequence of points { f*mi (&m,)} converges to the point 1.

Proof. Without loss of generality one assumes (U, " W) C T, £ € (U, N f(Uy,)) and
{&n} € (U,N f(Uy,)). We pick a number r > 0 so that the ball B,(O) = {(x1,...,z,) €
R"™ : (21 +---+27) <r} would be a subset of the set h,(Uy).

Let he(&m) = &n = gflm"w oS Eottmy -+ &nm). The set K* =
{(z1,...,25,) € Oxy.. .\, : T <ai+---+23 <r’}isafundamental domain of
the restriction of the diffeomorphism ay, to Oxy...,z, \ O. Then for every m € N

there is the unique integer k,, such that % < AP ((Gm)? + -+ (Em)?) < 12 Let
N = ay™ 1 (&y). Since lim &,, = h,(€) € (Oxy,41...2, \ O) for every i € {1,..., A\, }
7 m—+00

the limit lim &, equals 0 and hence lim k,, = 4+oc. Furthermore the sequence {&; ., }
m—0o0 m—00

is bounded for every i € {\, +1,...,n} and hence 7;,, = (%)km g‘zm — 0 for m — +o0
and i€ {A\, +1,...,n}.

Therefore the coordinates of the points 7, = (71.m, - - -, Tnm) Satisfy % < (im)? +
vt (Maym)?<riforie{1,...,\,} and 7J;,, = 0as m — oo fori € {\, +1,...,n},
i.e. the points 7, are inside some compact subset of R". Since any sequence of points
of a compact set has a converging subsequence, there are a subsequence {k,} of
the sequence {k,,} and a point 7 € (W4 \ O) such that Jll}rgo Nm; = 1. Then &, =

h;l(a;fmj (7/m,)) is the desired subsequence. O
Proof of item (2) of Theorem 1

Proof. Here we prove that W is a submanifold of the manifold M", homeomorphic to
R vi .
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Let T, = hpi(Ef\”p_). Then for every point x € W there is a natural number n,
such that x € f"=(T),,). Let T),,(z) = f~™(T},) then there is a chart ¢, : U, = R"

of the manifold M™ such that 1, (U, N T, (z)) = R*»:i. If A\,, = n or \,, = 0 then
Vo (Ux N Ty, () = (U, N W), Therefore the unstable manifold of every node point
is a smooth submanifold.

Now we show that W} is a submanifold of M™ homeomorphic to RY: for every
saddle point p; as well. Suppose the contrary: W is not a submanifold of M™. Then
there is a point € W such that (U, \ T, (x)) "W} # 0 for every chart v, : U, — R”
of the manifold M™ for which ¢,(U, N T, (z)) = R*:. Hence there is a sequence
{zn} € (W N\ T, (x)) such that d(w,,, ) — 0 for m — +o0.

Lemma 1 gives us that there is a subsequence r,,; and there is a sequence k; such
that the sequence y; = f~% (x,,,) C W% converges to a point y € (W \ p;).

According to the item (1) of Theorem 1 there is a point p, € Ry such that y € W .
Consider three possibilities: [a] dim W = 0; [b] 0 < dim W} < n; [¢] dim W} = n.

[a] If dim W = 0 then y; € W} for all j starting from some one. Hence, i = v and
y is a homoclinic point, that contradicts to Statement 2. Thus case |a] is impossible.

] If dim W} = n then W} = p, and y = p,, that contradicts to the condition
y € W, Thus case [c| is impossible.

[b] If 0 < dim W} < n then v > i as f has no homoclinic points. According to
Lemma 1 there is a subsequence {y;, }, a sequence m, — 400 and a point z € W, such

k
that the sequence {f™(y;,)} converges to the point z. As M" = |J W} then z € W! .
=1

Similarly to above arguments, v # j,v # i and 0 < dim W} < n. Due to finiteness of
the set R the case [b] is also impossible.

Thus, W} is a topological submanifold of the manifold M™ homeomorphic to R »i .

O

3.3. Asymptotic behaviour of the invariant manifolds of chain recurrent
points

Proof of the item (3) of Theorem 1

i—1
Proof. Now we prove that (cl(Wy) \ W) C U W,
=1

If p; is a sink then the set c/(W}!) \ W is empty and the statement is automatically
true. In the other cases let us consider a point x € (cI(W}.) \ W}.) and prove that
xr € W for some v < i.

Indeed, as = € (cl(W;)\ (W, Up;)) then there is a sequence {x,,} C W} such that
d(Tpm, z) = 0 for m — +o00. By item (1) of Theorem 1, z € W} for some v € {1,...,k}.
There are three possibilities: (a) p, is a sink, (b) p, is a saddle, (c) p, is a source.

In the case (c) z,, € W} for all m large enough. But then p, = p; and x € W}
that contradicts the assumption.
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In the case (a) W)\ = p,, = p, and z,, € W for all m large enough. Then
Wy AW, # 0 and v < is true.

In the case (b) by Lemma 1 there are a subsequence z,,; and a sequence k; such
that the sequence y; = f’kj(xmj) converges to a point y € (W, \p,). By the item (1) of
Theorem 1 there is a point p,, € Ry such that y € W , that is p, < p,. If w =1 then
the statement is true. If not then arguing as above we get that the point p,, cannot be
a source. The point p,, is evidently not a sink because p, is a saddle point. Thus, the
point p,, is a saddle different from p,. Repeating the process, taking into account the
finiteness of Ry and the absence of cycles, we obtain the statement in a finite number
of steps. n
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