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Abstract. We consider a known predator-prey system, where more than one predator compete for
the same prey. Mainly the case with two predators is considered. A review of general results is given,
among them conditions for the extinction of one predator and an investigation of the different types
of coexistence of predators. In non-degenerate cases the predators in this model cannot coexist at an
equilibrium, but there can be a cyclic or more complicated coexistence. Many numerical results are
presented. A model map for a Poincaré map is given under some conditions. But the most interesting
case where there can arise ”spiral-like” attractors is not well known here, and we pose open questions.
We discuss some bifurcations and the existence of systems with several attractors.
Keywords: bifurcation, chaos, predator-prey.

1. Introduction

In this work we make a review of the behaviour of a system of two predators and
one prey. We discuss extinction and possible types of coexistence. The coexistence can
be cyclic or chaotic of different types. In some cases the chaos is well described by a
model map, in other cases it seems to be a spiral-like attractor. We conjecture that at
least some of the spiral chaos comes from bifurcations from a contour described here.
There is an open question whether there are even more types of chaos. We also give
examples, where the system has more than one attractor. Some of the results are more
general for the case of more predators, like dissipativity and extinction.

The general system of n competing predators feeding on the same prey is considered
to be of the type

X ′
i = piφi(S)Xi − diXi, i = 1, . . . , n,

S ′ = H(S)−
n∑
i=1

qiφi(S)Xi,
(1.1)

where the variable S represents the prey populations and the variables Xi represent the
predator populations. They are, of course, non-negative. The function φi is assumed
non-decreasing. The function H describes the behaviour of the prey without predators
and is usually of logistic type. An exception is the Lotka-Volterra system, the behaviour
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of which is simple in this case. These systems were introduced by Hsu and Waltman [6,
7, 8]. We mainly consider the case where

H(S) = rS

(
1− S

K

)
, φi(S) =

S

S + Ai
, i = 1, . . . , n. (1.2)

A.V.Osipov [12] introduced a family defined by some conditions on the functions
of system (1.1) given below.

We assume H(0) = H(K) = 0 for some K > 0, H ′(K) < 0, H ′′(s) < 0 and
φi(0) = 0, φ′

i(s) > 0. The functions φi and H are of the class C2[0,∞) and the variables

xi and s are non-negative: xi ≥ 0, s ≥ 0. The change of variables s =
S

K
and xi =

qi
K
Xi

gives the system
x′i = ϕi(s)xi, i = 1, . . . , n,

s′ = h(s)−
n∑
i=1

ψi(s)xi,
(1.3)

where
h(s) =

1

K
H(sK), ψi(s) = φi(sK), ϕi(s) = piψi(s)− di.

The following conditions A1 − A5 are the main conditions introduced by Osipov [12].
Here and further we will assume that i takes values from the set {1, 2, . . . , n}.

A1. All the considered functions are of the class C2[0,∞) and the variables xi and s
are non-negative: xi ≥ 0, s ≥ 0.

A2. ψi(0) = 0, ψ′
i(s) > 0 for s > 0.

A3. ϕ′
i(s) > 0 for s > 0 and there exists a λi > 0 such that ϕi(λi) = 0.

A4. h(0) = h(1) = 0, h′(1) < 0 and h′′(s) < 0 for s > 0.

A5. 0 < λn < · · · < λ2 < λ1 < 1.

If λi in (A3) are all different we can always reorder the equations so that (A5) is
satisfied. We observe that if λi ≥ 1 for some i, then the corresponding predator cannot
survive.

The most standard example of system (1.3), which we will consider now, is obtained
from the functions in (1.2). We assume pi > di. If not, the corresponding predator will
not survive. Using the time change τ = rt, where τ is the new time, and the variable

changes s =
S

K
, xi =

qi
rK

Xi, we get the simplified equations

x′i = mi
s− λi
s+ ai

xi,

s′ =

(
1− s−

n∑
i=1

xi
s+ ai

)
s,

(1.4)
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where
ai =

Ai
K
, mi =

pi − di
r

, λi =
diAi

K(pi − di)
.

In earlier works [4, 5, 13, 14], for n = 2, we have discussed the behaviour of the
system, boundaries for extinction, different types of coexistence of the predators, cyclic
and chaotic. In some cases we have conjectured the existence of spiral chaos [15, 16, 17,
11]. In this work we present an overview of earlier results and some new results from
numerical experiments of this system. It is a serious update of the review in [14], but
without elementary introduction. Before we consider the properties of this systems, we
shortly look at the Lotka-Volterra system, where in (1.1) the functions are

H(S) = rS, φi(S) = S,

and thus the system becomes

X ′
i = (piS − di)Xi, i = 1, . . . , n,

S ′ =

(
r −

n∑
i=1

qiXi

)
S,

A change of the time τ = rt and the variables xi =
qiXi

r
gives the system

x′i = mi(s− λi)xi, i = 1, . . . , n,

s′ =

(
1−

n∑
i=1

xi

)
s,

where mi =
pi
r
, λi =

di
pi

. Further, suppose that λn < · · · < λ2 < λ1. Then all predators

except the population xn go extinct. To see that, use the Lyapunov function ln

(
xmn
i

xmi
n

)
.

The main system we consider is anyhow rich in the behaviour of coexistence of the
predators and it is one of the first systems, where the known Ecological Principle of
Exclusion does not hold in general.

The outline of our work is the following. We start with discussing the dissipativity
and extinction problem for any number of predators. Then we restrict ourselves to two
predators and after shortly mentioning the chaos got from a model map (details can
be found in earlier works) we give some typical results from numerical examination of
the system. We look for extinction boundaries and for boundaries between different
cyclic and chaotic behaviour. We continue with discussing a contour from which the
spiral-like chaos might bifurcate. Then we show a bifurcation diagram from which we
immediately conclude the existence of, at least, two attractors. At the end we give an
example of the dynamics of a Poincaré map and mention about modifications in order
to get more realistic systems from a biological point of view.
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2. Dissipativity

We consider system (1.3). We find a positively invariant set for the system. More
results on dissipativity are found in [12]. Let

wi = sup
0<s<1

w̃i(s), w̃i(s) =
ϕi(s) +

h(s)
1−s

ψi(s)
, V =

x1
w1

+
x2
w2

+ · · ·+ xn
wn

+ s.

The value of wi is finite and positive, because w̃i(s) → −∞ for s→ 0+ 0 and w̃i(s) →
ϕi(1)−h′(1)

ψi(1)
= Qi > 0 for s→ 1− 0. We now claim the following:

Statement 1. The set formed by the inequalities s, xi ≥ 0 and V ≤ 1 is positively
invariant for system 1.3 satisfying conditions A1−A5 and all trajectories of the system
with positive initial values enter the set in finite time.

Proof. It can be checked directly, that if s = 1 then V ′ < 0 except at (0, . . . , 0, 1) where
V ′ = 0. In other points we get

V ′ = h(s) +
n∑
i=1

[
ϕi(s)

wi
− ψi(s)

]
xi =

=
h(s)

1− s
(1− V ) +

h(s)

1− s
(V − s) +

n∑
i=1

xi
wi

[ϕi(s)− wiψi(s)] =

=
h(s)

1− s
(1− V ) +

n∑
i=1

xi
wi

[
h(s)

1− s
+ ϕi(s)− wiψi(s)

]
< 0.

From here the statment follows.

Let us examine the case where

h(s) = (1− s)s, ϕi(s) =
sbi − λi
sbi + ai

, ψi(s) =
sbi

sbi + ai
. (2.1)

If 0 < bi ≤ 1 then w̃i(s) increases and wi = Qi. If bi > 1 then it is possible that wi > Qi.
For example, bi = 2ai = 1, λi = 0.1 gives w̃i(0.5) = 3.1 and Qi = 2.9.

3. Extinction

We here look for the competition between predators i and j for system (1.4). We
find sufficient conditions for the extinction of one of them. More general results on
extinction are found in [12]. We assume there is some j such that λj < λi, that is i > j.

Statement 2. Let L =
λi(1− λj)

λj(1− λi)
and λi > λj. If aj >

ai
L+ ai(L− 1)

then the

predator i goes extinct.
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Because L > 1 the predator i always goes extinct when aj >
1

L− 1
. We observe

that condition
aj >

ai
L+ ai(L− 1)

(3.1)

follows from aj >
ai
L

and aj > ai.

Proof. We look at the function η defined by

η(s) =
ϕj(s)

ϕi(s)
= η1(s)η2(s),

where
η1(s) =

mj(s− λj)

mi(s− λi)
, η2(s) =

s+ ai
s+ aj

.

We use notations γ = η(0), α = η(1). We notice that γ < α is equivalent to
aj >

ai
L+ ai(L− 1)

. We introduce two numbers

κ0 = max
s∈[0,λj ]

η(s), κ1 = min
s∈[λi,1]

η(s).

They exist and are positive. We prove κ0 < κ1. We start with the case where ai ≤ aj.
From λj < λi follows η1(s) < 1 for 0 < s < λj and η1(s) > 1 for s > λi. Thus we get
η(s) < η2(s) for 0 < s < λj and η(s) > η2(s) for s > λi. Because η2 is increasing or
constant for a1 ≤ a2 we conclude that η(s1) > η2(s1) ≥ η2(s0) > η(s0) for s0 < λj and
s1 > λi from which follows κ0 < κ1 and (3.2).

We now consider the case where aj ≤ ai. We observe that in this case both η1 and
η2 are decreasing and thus also η. Then κ0 = η(0) = γ and κ1 = η(1) = α. We observe
that if κ is a number such that κ0 < κ < κ1 then

κϕi(s)− ϕj(s) < 0 (3.2)

for all s ∈ (0, 1).
Really, for s ∈ (0, λj], ϕi(s) is negative and ϕj(s) is non-positive and from η(s) < κ0

we get ϕj(s) > κ0ϕi(s) > κϕi(s) implying (3.2). For s ∈ (λjλi], ϕi(s) ≤ 0 < ϕj(s)
implying (3.2). Finally for s ∈ (λi, 1) both ϕi(s) and ϕj(s) are positive and from
η(s) > κ1 we get ϕj(s) > κ1ϕi(s) > κϕi(s) implying (3.2).

Consider now the function U defined by U(x, y) = ln

(
xκi
xj

)
. For the time derivative

we get U ′ = κϕi(s)− ϕj(s) < 0 and predator xi goes extinct.

Remark. We notice that the proof can easily be modified for the functions in (2.1),
so that the statement holds also if these functions are chosen for system (1.3).

It is well known [3] that when the number of predators increases, the probability for
coexistence of all of them tends to zero. This is quite natural also from our estimates

ISSN 0203–3755 Динамические системы, 2019, том 9(37), №3
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showing that for coexistence we must have ai > Lai−1, where L > 1 is defined as in
statement 2 for j = i− 1.

4. General behaviour

We shortly decribe the main local behaviour of the three-dimensional system.
According to assumption (A5) we suppose λ1 > λ2. The system always has two
equilibria: (0,0,0), which always is a saddle with two-dimensional stable manifold in
the plane s = 0, and (0,0,1), which is a saddle with one-dimensional stable manifold
on the axis x1 = x2 = 0 if λ1, λ2 < 1 (in other cases at least one predator goes extinct
and the system reduces to smaller dimension). When λ1, λ2 < 1 there are two more
equilibria:

a)
λ1 = 0.45, λ2 = 0.3, a1 = a2 = 0.3,m1 = m2 = 1

b)
λ1 = 0.3, λ2 = 0.2, a1 = a2 = 0.3,m1 = m2 = 1

Fig. 1. (a) In plane x2 = 0 the equilibrium P1 is a global attractor, in the whole space a saddle with
one-dimensional unstable manifold, in plane x1 = 0 there is a limit cycle, the equilibrium in this
plane is a saddle with one-dimensional stable manifold. (b) Plane x1 = 0 there is a limit cycle, the
equilibrium in this plane is a saddle with one-dimensional stable manifold. In plane x2 = 0 there is a
limit cycle, the equilibrium in this plane is a sink.

• P1 = ((1 − λ1)(1 + a1)), 0, λ1) which is a saddle with one-dimensional unstable

manifold for λ1 >
1− a1

2
and a source if λ1 <

1− a1
2

. In the case λ1 >
1− a1

2
,

P1 is a global attractor in the plane x2 = 0.

• P2 = (0, (1 − λ2)(1 + a2)), λ2) which is a saddle with one-dimensional stable

manifold for λ2 <
1− a2

2
and a sink if λ2 >

1− a2
2

. In the case λ2 >
1− a2

2
, P2

is a global attractor in the plane x1 = 0.

There is a unique globally attracting limit cycle in the plane x2 = 0 if λ1 <
1− a1

2

and a unique globally attracting stable limit cycle in the plane x1 = 0 if λ2 <
1− a2

2
.
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This was first proved by Cheng [2]. The uniqueness of limit cycles for this and similar
systems can also be proved using the known Zhang Zhi-fen theorems [18]. Estimates
for the size of the cycles for critically small ai and λi are given in [9, 10]. The size of the
cycle we determine by the maximal and minimal populations on the cycle. The cycle is
called big if at least one population sometimes gets small. The behaviour around the
coordinate planes is shown in figure 1.

There is no equilibrium for λ1 ̸= λ2 or a1 ̸= a2, where the predators coexist, anyhow
they can coexist in a cyclic or chaotic way. Conditions for construction of some well-
defined Poincaré maps on s = const, s′ < 0 are obtained in [13].

In the case where the Poincaré map is well-defined, very often there is a strong
contraction in the (x1 + x2)-direction and it is shown by numerical experiments and
theoretical estimating arguments that the one dimensional model map given by

f(v) = β + v − k1 + k2e
v

1 + ev
u,

where β, u and ki are constants and v = ln(x2/x1) gives a good approximation. This
map is derived and analyzed for simple behaviour in [4, 5].

4.1. Charts of dynamical regimes

We now present some result of numerical two-parametric analysis.
In figures 2 – 4 we see the results of numerical investigations of the behaviour of

the system for fixed λi and mi where i = 1, 2. We have examined the behaviour for
five different random initial conditions for a grid of parameter values of a1 and a2. A
predator is considered to go extinct if the populations becomes less than e−100. We
call the attractor n-cyclic if the intersection with s = λ2, s

′ < 0 is n-periodic under
the Poincaré map defined on this surface. We have denoted regions with x if the first
predator x1 goes extinct and with y if the second predator x2 goes extinct. Regions,
where there is observed only simple one-periodic cycles, are coloured cyan. Regions,
where there is observed a 2-cyclic attractor, are coloured magenta. Regions, where
there is observed a 3-cyclic attractor, are coloured dark yellow. Sometimes also regions
where the second predator x2 goes extinct can be seen in green. Regions, where there is
observed chaos, but no 3-cyclic attractor, are coloured blue. We observe, that for some
parameter values two different types of attractors have been detected.

In figures 2 – 3 we have added a figure calculating the boundaries for extinction of
the predator x1 for different values of mi and compared with the theoretical estimate
(the curve to the left).

We make the observation that the behaviour depends on m1 and m2 and strongly
on the difference of λ1 and λ2. When λ1 → λ2 we roughly have the following situation
for a1 increasing: for a1 small, the predator x1 goes extinct, for a little bigger, the
predator x2 goes extinct and for even bigger a1 there is a simple cyclic coexistence.
The predator x2 can go extinct only if a1 < 1 − 2λ1, because if a1 > 1 − 2λ1 then
there is saddle equilibrium in the coordinate plane x2 = 0 and there is more likely to
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Fig. 2. (a),(b),(c) Charts of dynamical regimes for the system 1.4 on the parameter plane (a1, a2)
for mi = 0.1, mi = 1, and mi = 5, respectively (λ1 = 0.35, λ1 = 0.2). Cyan color (1) corresponds
to simple periodic regimes; magenta color (2) — 2-periodic regimes; dark yellow (3) — 3-periodic
regimes; blue (> 3) — periodic regimes with period > 3 and a chaotic regimes; red color (x1e) —
regime corresponding to the extinction of the first predator x1; and green color (x2e) — the extinction
of the second predator x2. (d) Curves of the extinction of the predator x1: G theoretical estimate
(3.1), green, blue, and red curves are given by compared (3.1) for mi = 0.1, mi = 1, and mi = 5,
respectively.

be some kind of spiral chaos if it is not cyclic. Of this reason there is no extinction of
the second predator in figure 3.

We have not included pictures for small λ1 and λ2. In this case there is a hope
to obtain theoretical estimates for the stability of the limit cycles in the coordinate
planes. If both are unstable the predators coexist.

Open problem. Find out good reasons for the different behaviour observed in the
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Fig. 3. (a),(b),(c) Charts of dynamical regimes for the system 1.4 on the parameter plane (a1, a2) for
mi = 0.1, mi = 1, and mi = 5, respectively (λ1 = 0.5, λ1 = 0.2). Cyan color (1) corresponds to simple
periodic regimes; magenta color (2) — 2-periodic regimes; dark yellow (3) — 3-periodic regimes;blue (>
3) — periodic regimes with period > 3 and a chaotic regimes; red color (x1e) — regime corresponding
to the extinction of the first predator x1. (d) Curves of the extinction of the predator x1: G theoretical
estimate (3.1), green, blue, and red curves are given by compared (3.1) for mi = 0.1, mi = 1, and
mi = 5, respectively.

figures and find approximate expressions for different bifurcation lines. Find bifurcation
curves for attractors by numerical methods. How many attractors can we have in the
same system for different parameters?

The cases where λ1 = 0.3 and λ1 = 0.2 and mi > 0.2 are very interesting even if we
do not include a figure here. But the existence of three different attractors is frequent
in these cases.

In figure 5 we can see a case with three attractors.
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Fig. 4. (a), (b), (c), (d) Charts of dynamical regimes for the system 1.4 on the parameter plane (a1,
a2) for (a),(b) λ1 = 0.3 and λ1 = 0.2 and mi = 0.1, (c) λ1 = 0.25 and λ1 = 0.2 and mi = 0.1, (d)
λ1 = 0.35 and λ1 = 0.2 and m1 = 5 and m2 = 0.1. Cyan color (1) corresponds to simple periodic
regimes; magenta color (2) — 2-periodic regimes; dark yellow (3) — 3-periodic regimes; blue (> 3) —
periodic regimes with period > 3 and a chaotic regimes; red color (x1e) — regime corresponding to
the extinction of the first predator x1; and green color (x2e) — the extinction of the second predator
x2.

We now analyze the bifurcation diagram in [14]. This was produced for a2 =
0.02, λ1 = 0.35, λ2 = 0.2,m1 = m2 = 1 and for a1 as bifurcation parameter. New
versions of this bifurcation diagram are produced in figure 6.

In figure 6 (a) we produce a bifurcation diagram looking at the value of ln
(
x2
x1

)
on the intersection of the attractor with s = λ2, s

′ < 0. The initial values for a1 = 0.1
were taken as x1 = x2 = s = 0.5 and increasing a1 for the next value of a1 we take the
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Fig. 5. Attractors for parameters a1 = 0.855, λ1 = 0.3, a2 = 0.0154, λ2 = 0.2,m1 = m2 = 0.5. There is
a simple cycle (cyan) a 3-cyclic (green) and a 15-cyclic (red) attractor.

Fig. 6. (a) bifurcation diagram for a2 = 0.02, λ1 = 0.35, λ2 = 0.2,m1 = m2 = 1. The range of
bifurcation parameter a1 goes from 0.1 to 2. (b) bifurcation diagram for a2 = 0.02, λ1 = 0.35, λ2 =

0.2,m1 = m2 = 1. The range of bifurcation parameter a1 goes from 1.5 to 1.6.

initial values to be the last point on the attractor calculated for the previous value of
a1. In figure 6(b) the bifurcation diagram is produced for the same fixed parameters

ISSN 0203–3755 Динамические системы, 2019, том 9(37), №3
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as in the previous bifurcation diagram, but the value of a1 goes from 1.6 to 1.5. The
initial values for a1 = 1.6 are chosen as x1 = 0.34, x2 = 0.22, s = 0.35 and decreasing a1
for the next value of a1 we take the initial values to be the last point on the attractor
calculated for the previous value of a1.

Comparing the bifurcation diagrams we easily see two attractors for values of a1
around 1.6.

5. Spiral chaos from a contour?

Finally, we discuss the nature of ”spiral” attractors observed in the system for
parameters a1 = 0.5, λ1 = 0.33, a2 = 0.001ν, λ2 = 0.01ν,m1 = 1,m2 = 0.2, see figure 7.
Usually, such attractors appear due to a Shilnikov homoclinic orbit to the saddle-focus
equilibrium [15, 16, 17, 11]. In the problem under consideration all equilibria are located
in the invariant planes and, thus, we cannot have a homoclinic orbit. We suppose that in
our problem another scenario is possible, when spiral chaos appears from a heteroclinic
cycle.

Fig. 7. Attractors for parameters a1 = 0.5, λ1 = 0.33, a2 = 0.001ν, λ2 = 0.01ν,m1 = 1,m2 = 0.2, in
the cases ν = 1, 4, 10, 12.
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1. The unstable separatrix of the equilibrium at ((1 − λ1)(λ1 + a1), 0, λ1) until it
hits s = 0 at P ∗ = (x∗1, x

∗
2, 0) in the case a2 = λ2 = 0.

2. The curve along x2 = Cxγ1 , where γ =
m2λ2a1
m1λ1a2

and C = x∗2(x
∗
1)

−γ from P ∗ to

(0, 0, 0).

3. The line segment x1 = x2 = 0, 0 < s < 1.

4. The unstable separatrix of the equilibrium (0, 0, 1) in the plane x2 = 0 reaching
the equilibrium, where part 1 starts.

We suppose that the spiral chaos arises from this contour. We support the conjecture
by showing some attractors developing from the contour changing a parameter. We look
at some attractors for a1 = 0.5, λ1 = 0.33, a2 = 0.001ν, λ2 = 0.01ν,m1 = 1,m2 = 0.2.
We can see them in figures 7-8. The attractor for ν ≤ 1 is so near to the contour that
we can not see the differences. Increase in ν shows us a series of attractors, where we
can observe some spiral-like chaos development.

Fig. 8. Attractors for parameters a1 = 0.5, λ1 = 0.33, a2 = 0.001ν, λ2 = 0.01ν,m1 = 1,m2 = 0.2, in
the cases ν = 15, 22, 25, 29.

We also find out how the intersection of an attractor with a Poincaré section looks
like. In figure 9 we see the attractor and intersection with s′ = 0 in the part, where s′
is increasing. It is an open problem to find some kinds of model maps in such cases.
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Fig. 9. Attractor and intersection with a Poincaré section for parameters a1 = 0.5, λ1 = 0.33, a2 =

0.015, λ2 = 0.15,m1 = 1,m2 = 1. The sequence of numbered points are iterates of the corresponding
Poincaré map.

6. Conclusion.

We have given an overview of results of system (1.1) starting from dissipativity and
extinction. The results of dissipativity could be improved to get a smaller positively
invariant set using non-linear upper boundary like it was done for the system with only
one predator in [10]. The results of extinction use only the equations for the predators,
they can be improved by also using the equation for the prey. Our numerical results
try to include the general picture of the behaviour of the system when we assume λi
and mi constant and change the parameters ai. We have discussed the open problem of
how many attractors can be found. We give numerical results which argument for the
bifurcation leading to chaos starting from a contour got for some parameters tending
to zero. A typical behaviour of the dynamics on an attractor on a Poincaré section is
shown in figure 9.

In most of the chaotic behaviour studied here one population can get very low, and
there is the question whether this can be realistic. Some modifications were suggested
in [14]. Anyhow, there is also complicated behaviour in systems, where the populations
are not getting too low. Such an example was also given in [14]. Another realistic case
is the example we gave with three attractors. Yet another such interesting example
we get for a1 = 1.5, λ1 = 0.3, a2 = 0.01, λ2 = 0.2,m1 = m2 = 1, where easily three
attractors can be observed. One simple cyclic, another 3-periodic and a 4-periodic one.
Studying the bifurcations of these attractors changing parameter 0.5 < a1 < 2 we
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see that the simple periodic one always exists, while the branches from the 3- and
4-periodic attractors exist for intervals which overlap on a smaller interval.

The standard system has cycles with very low populations for small a and λ. In
nature this does not occur because the predator changes behaviour to feeding on other
preys, where however it cannot survive for ever. Because this change is sudden in Arctic
regions (stochastic in Middle Europe) we there get a system with switches.

Such a system is given in [14].
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