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Abstract. We consider the estimation of the entropy of a discrete dynamical system by using a
symbolic image that is a directed graph constructed by means of a finite covering of phase space.
Trajectories of the system are coded by paths on the graph. Flows on а symbolic image approximate
invariant measures of the system. The maximal metric entropy of a symbolic image is estimated by
the logarithm of the maximal eigenvalue of the symbolic image adjacency matrix. There is the flow on
which this entropy is achieved. The invariant measure of the maximal entropy is estimated by using
this flow.
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1. Symbolic image of a dynamical system

Let f : M → M be a homeomorphism of a compact manifold M generating a
discrete dynamical system

xn+1 = f(xn), (1.1)

and ρ(x, y) be a distance on M . In what follows we use the concept of symbolic image of
a dynamical system [16], which brings together symbolic dynamics [1, 13] and numerical
methods [9]. Let C = {M(1), . . . ,M(n)} be a finite closed covering of a manifold M .
The set M(i) is called cell with index i.

Definition 1. [15] Symbolic image of the dynamical system (1.1) for a covering C is
a directed graph G with vertices {i}corresponding to cells {M(i)}. The vertices i and
j are connected by the edge i→ j iff

f(M(i))
∩

M(j) ̸= ∅.

Symbolic image is a tool for a space discretization and graphic representation of the
dynamic of a system under study, which allows the obtaining useful information about
the global structure of the system dynamics. Symbolic image depends on a covering C.
The existence of an edge i→ j guaranties the existence of a point x ∈M(i) such that
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f(x) ∈ M(j). In other words, an edge i → j is the trace of the mapping x → f(x),
where x ∈ M(i), f(x) ∈ M(j). If there isn’t an edge i → j on G then there are not
the points x ∈M(i) such that f(x) ∈M(j).

We do not place special restrictions on a covering C, but basing on the theorem
about the triangulation of a compact manifold [18] we may without loss of generality
assume that cellsM(i) are polyhedrons intersecting on their boundary disks. In practice
M is a compact in Rd, and M(i) are cubes or parallelepipeds. Let C be a covering of
M by polyhedrons intersecting on their boundary disks. In what follows we also use
a measurable partition C∗, such that a boundary disk belongs only one of adjoining
cells. We assume that cells-polyhedrons are closures of their interiors.

Definition 2. A vertex of a symbolic image G is said to be recurrent if there is a
periodic path passing through it. The set of recurrent vertices is denoted by RV. The
recurrent vertices i and j are called equivalent if there exists a periodic path passing
through i and j.

Thus, the set of recurrent vertices RV is split into equivalence classes {Hk}. In the
graph theory such classes are called strong connectivity components.

Let
diam M(i) = max(ρ(x, y) : x, y ∈M(i))

be the diameter of a cell M(i) and d = diam(C) be the maximum of the diameters of
the cells. The number d is called the diameter of the covering C.

A directed graphG is uniquely defined by its adjacency matrix (matrix of admissible
transitions) Π. The matrix Π = (πij) has sizes n×n, where n is the number of vertices
of G, and πij = 1 iff there exists the edge i → j, else πij = 0. Hence an i-th row in
Π corresponds to the vertex i (cell M(i)), and on the place j in this row there is 1
or 0 depending on the existence (or nonexistence) of nonempty intersection f(M(i))
and M(j). Matrix of admissible transitions depends on the numbering of vertices (cells
of the covering), so that a change of numeration leads to a change of matrix Π. Note
that there exists a numeration transforming the matrix of admissible transitions to a
canonical form.

Proposition 1. [1] Vertices of a symbolic image G may be numbered such that the
adjacency matrix has the form

Π =


(Π1) · · · · · · · · · · · ·

. . .
0 (Πk) · · · · · ·

. . . . . .
0 0 (Πs)

 ,

where every diagonal block Πk corresponds either an equivalence class Hk of recurrent
vertices or a nonrecurrent vertex and consists of one zero. Under diagonal blocks are
only zeroes (upper triangular matrix)
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2. Entropy

In 1865 R. Clausius [4] introduced the most important in thermodynamics concept
entropy. To explain the irreversibility of macroscopic states L. Boltzmann in 1872 [3]
first introduced statistical approach in thermodynamics : he proposed to describe a
state of a system by using its microstates. The Boltzmann entropy S is statistical
entropy for the equiprobable distribution of a system over P states, it is defined as

S = k log(P ),

where k is the Boltzmann constant.
In 1948 C. Shannon [19, 20] introduced the notion of capacity (C) for an information

channel as follows
C = lim

T→∞

log2N(T )

T
,

where N(T ) is the number of admissible signals for the time T . He also defined
information entropy as follows

h = −
∑
i

pi log2 pi,

where pi is a probability of i-th signal (message), i ∈ 1, . . . , n, and n is the number of
signals. A. N. Kolmogorov in 1958 [11] introduced entropy in the theory of dynamical
systems. Entropy is a fine invariant of a dynamical system, it may be interpreted as a
measure of the system chaoticity. Comprehensive information on entropy in dynamical
systems is given in [6, 10]. It turns out that entropy characteristics may be obtained
both for a system described analytically and for its phase portraits. The application of
such characteristics to digital image analysis is given in [2].

Motivation Consider a discrete dynamical system xn+1 = f(xn) on a compact
manifold M , where f : M → M is a homeomorphism. Let C = {M(1), ..,M(n)}
be a finite covering of M and the sequence {xk = fk(x), k = 0, . . . N − 1} be the
N -length part of the trajectory of a point x. The covering C generates a coding of this
part via a finite sequence ξ(x) = {ik, k = 0, . . . N − 1}, where xk ∈ M(ik). In other
words, ik is the index of the cell from C which contains the point xk = fk(x). Generally
speaking, the mapping xk → ik is multivalued. The sequence ξ = {ik} is said to be
(admissible) encoding of the trajectory {xk = fk(x)} with respect to the covering C.
Assume that we know all admissible N -length encodings, and there is a need to predict
subsequent p-length encodings, i. e. to find admissible encodings of length N + p.

Let the number of admissible encodings K(N) grows exponentially depending on
N . We estimate the rate of growth of encodings by the number

h = lim
N→+∞

logbK(N)

N
, (2.1)

where b may be any real number greater than 1. The bases b = 2 (following to Shannon)
or b = e are in common use. The existence of the limit in (2.1) follows from the Polya
lemma [1, 13].
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Lemma 1 ([13], p. 103). If a sequence of non-negative numbers an satisfies the
inequality

an+m ≤ an + am,

then there exists lim
n→∞

an
n

.

For the number of admissible encodings we have

K(n+m) ≤ K(n)K(m),

hence for the sequence an = logbK(n) there exists the limit (2.1).
Thus, for the number of encodings K(N) we obtain the estimation

K(N) ∼ BbhN ,

where B is a constant. If h ≠ 0 then

K(N + p)

K(N)
∼ bhp.

This relation means that for any N the uncertainty of future encodings grows with the
exponent hp regardless the knowledge of previous encodings.
If the growth of the number of different encodings is not exponential (i. e. h = 0), for
example as

K(N) ∼ BNA,

where A is a positive number (may be large), then

K(N + p)

K(N)
∼ (1 +

p

N
)A → 1,

when N → ∞. In other words, the uncertainty of the future decreases when the length
N of known encodings increases.

Thus, if the growth of the number of different encodings is exponential, the
uncertainty does not depend on N , in other case it decreases as N increases. Value
h may be interpreted as a characteristics of uncertainty (chaoticity) of the dynamic of
the system considered.

Topological entropy. Let f be a continuous mapping defined on a manifold M and
C = {M(1), . . . ,M(n)} be an open covering of M . For an integer positive number N
consider a sequence

ω = ω1ω2 · · ·ωN ,
where ωk is a number from 1 to n. Construct the intersection of the form

|M(ω) =M(ω1) ∩ f−1(M(ω2)) ∩ · · · ∩ f−N+1(M(ωN)), (2.2)

which is an open set. The admissible encoding ω corresponds to the nonempty
intersection M(ω), i.e. there exists x ∈ M(ω1) such that fk(x) ∈ M(ωk+1). The
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sequence ω codes the segment of the trajectory {fk(x), k = 1, 2, . . . , N}. Consider
all the admissible N -lentgh encodings {ω} and the collection of sets CN = {M(ω)},
which is an open covering. Choose in CN a minimal by the number of elements (denoted
further by |CN |) finite subcovering CN .

Then according to the Polya lemma there exists the limit

H(C) = lim
N→∞

log |CN |
N

. (2.3)

Definition 3. The number
h(f) = sup

C
H(C),

where supremum is taken over all open coverings C, is called topological entropy of the
mapping f : M →M .

It is easy to see that there is little point in using this definition for practical
calculation of the entropy, so we consider some other methods.

A covering C2 is said to be refined in a covering C1, if any A ∈ C2 lies in a set
B ∈ C1. A sequence of open coverings Cn is called exhaustive if for any open covering
C there exists the number n∗ such that the covering Cn is refined in C for n ≥ n∗.

Proposition 2 ([1] p. 122). (1) If Cn is a sequence of open coverings with diameters

dn = max
A∈Cn

diamA

tending to zero, then Cn is an exhaustive sequence. (2) The entropy of the mapping f
is calculated as follows

h(f) = lim
n→∞

H(Cn).

Consider coverings C1 and C2, and construct for each of them nonempty
intersections of the form (2.2). Denote the obtained collections of sets by CN

1 and
CN

2 respectively. In each collection choose the minimal (by the number of elements)
subcovering, and denote them CN1 and CN2.

Proposition 3. If C2 is refined in C1, then

|CN1| ≤ |CN2|,

where |CNi| denotes the number of elements in the set considered.

Proof. If A1 ⊂ B1 and A2 ⊂ B2, then A1 ∩ f−1(A2) lies in B1 ∩ f−1(B2). By the
same way one can prove that elements of CN

2 are in corresponding elements of CN
1 .

Consider CN1 and CN2. Take from CN
1 all the elements which contain corresponding

elements of CN2, and form the covering C∗
N1.

Then |CN1| ≤ |C∗
N1| ≤ |CN2|, because CN1 is a minimal subcovering for CN

1 . The
proposition is proved.
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Corollary 1. Assume that C2 is refined in C1, and the numbers H(C1), H(C2) are
calculated by (2.3). Then

H(C1) ≤ H(C2).

3. Entropy of a symbolic image

Let G be a graph with the adjacency matrix Π. Denote by bn the number of
admissible n-length paths on G.

Definition 4. The number
h(G) = lim

n→∞

ln bn
n

is called the entropy of the graph G.

Remember that if (Πn) is the power of Π then the element (Πn)ij equals the number
of admissible n-length paths from i to j and

bn =
∑
ij

(Πn)ij.

Subdivision process. We will apply a process of adaptive subdivision to coverings
and construct a sequence of symbolic images. At first, let us consider a main step of
the process a subdivision of covering. Let C = {M(i)} be a covering of M and G be
the symbolic image with respect to C. Suppose a new covering NC is a subdivision of
C. It is convenient to designate cells of the new covering as m(i, k). This means that
each cell M(i) is subdivided by cells m(i, k), k = 1, 2, . . . which form a subdivision of
the cell M(i), i.e., ∪

k

m(i, k) =M(i).

Denote by NG the symbolic image for the new covering NC. The vertices of the
new symbolic image are denoted by (i, k). It is possible that some cells will not be
subdivided, i.e. m(i, 1) = M(i), and the vertex i in G is the vertex (i, 1) in NG.
The subdivision just described generates a natural mapping s from NG onto G which
takes the vertices (i, k) onto the vertex i. From f(m(i, k)) ∩m(j, l) ̸= ∅ it follows that
f(M(i))∩M(j) ̸= ∅, so the edge (i, k) → (j, l) is mapped onto the edge i→ j. Hence,
the mapping s takes the directed graph NG onto the directed graph G.

Theorem 1. Let Cn be a sequence of subdivisions of a closed covering, such that cells
are polyhedrons intersecting on boundary disks, and diameters dn of Cn tend to zero.
Denote by Gn the symbolic images constructed for a mapping f :M →M in accordance
with the sequence Cn. Then for the entropy of f the following inequality holds

h(f) ≤ lim
n→∞

h(Gn).
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Proof. Let Cn = {M(i)} be a closed covering from the sequence described above, and
Gn be a symbolic image of the mapping f constructed according to Cn. Consider the
set PN of encodings of N -length segments of trajectories. It is obvious that PN is not
greater than the number of admissible N -length paths (denoted by bN) on Gn,.

Hence the number |CN | of nonempty intersections of the form

M(ω) =M(ω1) ∩ f−1(M(ω2)) ∩ · · · ∩ f−N+1(M(ωN))

is not greater than bN . Thus,
H(Cn) ≤ h(Gn).

If C is an open covering then there exists the number n∗ such that the covering Cn
is refined in C for n ≥ n∗. Then in accordance with Proposition 3 we have

H(C) ≤ H(Cn) ≤ h(Gn).

Now consider an exhausting sequence of open coverings {C̃m}. Let n(m) be the number
n∗ constructed for the covering C̃m, then

H(C̃m) ≤ H(Cn) ≤ h(Gn),

where n ≥ n(m). If m→ ∞, then according to Proposition 2 we have

h(f) = lim
m→∞

H(C̃m) ≤ lim
n→∞

h(Gn).

Remember that a matrix A(n× n) is called decomposable if it admits an invariant
subspace with dimension less than n, and a matrix A is called nonnegative (positive)
if it has nonnegative (positive) elements. If for a nonnegative matrix A there is an
integer s > 0 such that all the elements of As are positive, then A is called primitive. In
particular the matrix of admissible transitions Π is nonnegative. It is nondecomposable
if the symbolic image consists of one class of equivalent recurrent vertices.

Theorem 2. (Perron-Frobenius) [7, 13]

• If A is a decomposable nonnegative matrix then it has an eigenvector e with
positive coordinates and the eigenvalue λ with multiplicity 1, and the other
eigenvalues µ satisfy the inequality |µ| ≤ λ.

• If A is a decomposable nonnegative matrix and |µ| < λ, then A is primitive.

• If A is a decomposable nonnegative matrix and it has h > 1 eigenvalues which
are equal in modulus λ, then A is not primitive, and by an agreed renumeration
of rows and columns it may be transformed to the form

0 A12 0 · · · 0
0 0 A23 · · · 0

. . . . . .
0 0 0 · · · Ah−1h

Ah1 0 0 · · · 0

 ,
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where Aij are square blocks, and Ah consists of h primitive blocks.

Theorem 3. The entropy of the graph G is equal to the logarithm of the maximal
eigenvalue of the adjacency matrix

h(G) = lnλ.

Proof. 1. Consider the case when G consists of one class of equivalent recurrent
vertices. Let e be a positive eigenvector for the maximal eigenvalue λ, i.e.

Πe = λe.

In the coordinate form we have ∑
j

(Πn)ijej = λnei. (3.1)

Let c = min{ei} and d = max{ei}. In accordance with the Perron-Frobenius theorem
c > 0. Then the following inequalities hold

c
∑
j

(Πn)ij ≤
∑
j

(Πn)ijej ≤ dλn.

It follows that ∑
j

(Πn)ij ≤
d

c
λn

for any i. Summing by i we obtain

bn =
∑
ij

(Πn)ij ≤
dr

c
λn,

where r is the number of rows in the matrix Π. It follows from (3.1) that

cλn ≤ λnei =
∑
j

(Πn)ijej ≤ d
∑
j

(Πn)ij ≤ d
∑
ij

(Πn)ij.

Hence we have the estimation

c

d
λn ≤

∑
ij

(Πn)ij = bn,

and the inequalities
c

d
λn ≤ bn ≤ dr

c
λn.

The required equality follows from it.
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2. Consider the case when there are several classes of equivalent recurrent vertices,
i.e the matrix Π is decomposable. According to Proposition 1, by a renumbering of
vertices this matrix may be transformed to the form

Π =


(Π1) · · · · · · · · · · · ·

. . .
0 (Πk) · · · · · ·

. . . . . .
0 0 (Πs)

 ,

where each diagonal block Πk corresponds to either one of the classes of equivalent
recurrent vertices Hk or some non-recurrent vertex, and consists of one zero. Under
diagonal blocks are zeroes. Each class Hk has the entropy

h(Hk) = lnλk,

where λk is the maximal eigenvalue of Πk. By the definition the entropy of a symbolic
image G equals

h(G) = lim
n→∞

ln bn
n

.

Consider an admissible n-length path ω. Assume that on G there are s classes of
equivalenceHk. The path ω passes both through the vertices fromHk and non-recurrent
vertices not belonging to these classes. Denote by ωk the parts of ω which lie in the
class Hk. If we delete from ω all the ωk it will contain only different paths σl passing
through non-recurrent vertices. Thus, ω is the sum ωk and σl. Combine all the paths σl
into a sequence σ, which is not necessarily is an admissible path. Let K be the number
of non-recurrent vertices in G. The sequence σ contains nonrecurrent vertices without
repetition. Hence the number of the sequences σ is not greater than the number of
permutations of K elements, i.e. K!.

Denote by n(k) the length of the path ωk from Hk. Then n(1)+n(2)+· · ·+n(s) ≤ n.
According to item 1 for every classHk there is a number d such that the number bk(n(k))
of different n(k)-length paths ωk is estimated as follows

bk(n(k)) ≤ dλ
n(k)
k ≤ dλn(k),

where λ = maxλk. Then for the number of different paths ωk lying in ω we have the
estimation ∏

k

bk(n(k)) ≤ dsλn(1)+n(2)+···+n(s) ≤ dsλn.

Summing the above results we have

bn ≤ K!dsλn.

Thus, we obtain an upper estimation for the entropy of G:

h(G) ≤ lim
n→∞

1

n
ln(K!dsλn) = lnλ.
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Prove the opposite inequality. Note that the number of admissible paths on G is greater
than the number of admissible paths in a class Hk. Then h(G) ≥ h(Hk) = lnλk for any
k, which gives the low estimation

h(G) ≥ lnλ.

Hence we have
h(G) = lnλ,

and the proof is completed.

4. Flows on a symbolic image

Let f : M → M be a homeomorphism of a compact manifold M . A measure µ
defined on M is said to be f -invariant, if for any measurable set A ⊂M the equality

µ(f−1(A)) = µ(A) = µ(f(A))

holds. In what follows we assume that all measures considered are the Borel ones. The
Krylov-Bogoliubov theorem [12, 10] guaranties the existence of an invariant measure µ
which is normed on M : µ(M) = 1. Denote by M(f) the set of all f -invariant normed
measures . This set is a convex closed compact in weak topology (see [14], p.511). The
convergence µn → µ in this topology means that∫

M

ϕdµn →
∫
M

ϕdµ

for any continuous function ϕ :M → R.
To understand how a distribution of a measure may appear on a symbolic image,

consider the following observation. Assume that there exists a f -invariant normed
measure µ onM , and the cells of a covering C are polyhedrons intersecting by boundary
disks. Construct a measurable partition C∗ = {M∗(i)} such that a boundary disk
belongs to one of adjoining cells. Then, to every edge i→ j of a symbolic image G we
can assign the measure

mij = µ(M∗(i) ∩ f−1(M∗(j))) = µ(f(M∗(i)) ∩M∗(j)), (4.1)

where the last equality follows from the invariance of µ. Besides that, the invariance of
µ leads to the equalities∑

k

mki =
∑
k

µ(f(M∗(k)) ∩M∗(i))) = µ(M∗(i)) =

∑
j

µ(M∗(i) ∩ f−1(M∗(j))) =
∑
j

mij.
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The value
∑

kmki is called the flow incoming in the vertex i, and the
∑

jmij is called
the flow outcoming from i. The equality∑

k

mki =
∑
j

mij (4.2)

may be interpreted as Kirchoff’s law: for any vertex the incoming flow equals the
outcoming one. Furthemore, we have∑

ij

mij = µ(M) = 1. (4.3)

It means that the distribution mij is normed (probabilistic). Thus, a f -invariant
measure µ generates on a symbolic image a distribution mij which satisfies the
conditions (4.2) and (4.3). The above reasoning leads to the following definition.

Definition 5. Let G be a directed graph. The distribution {mij} on edges {i → j}
such that

• mij ≥ 0;

•
∑

ijmij = 1;

• for any vertex i ∑
k

mki =
∑
j

mij

is called flow on G.

The last property may be called the invariance of a flow. The norming condition
may be written as m(G) = 1, where the measure of G is the sum of measures of all
edges. Sometimes in the graph theory for such a distribution the term ”closed flow” is
used.

For the flow {mij} on G we may define the measure of a vertex i as

mi =
∑
k

mki =
∑
j

mij.

Then
∑

imi = m(G) = 1.
Thus, a f -invariant measure generates a flow on a symbolic image. Now we consider

the inverse construction. Let on a symbolic image G a flow m = {mij} be given, then
we can construct the measure µ on M as follows

µ(A) =
∑
i

mi(v(A ∩M(i))

v(M(i))
, (4.4)

where A is a measurable set. Here v is a normed on M Lebesgue’s measure, and on
the assumption v(M(i)) ̸= 0. In this case the measure of a cell M(i) coincides with
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the measure of the vertex i: µ(M(i)) = mi. As v is the Lebesgue measure, the measure
of boundary disks is equal to zero and the measure of a cell does not depend on the
measure of its boundary. In general, the constructed measure µ is not f -invariant. But
it is an approximation to an invariant measure in the sense that µ converges in weak
topology to an invariant measure if the diameter of the covering tends to zero.

Theorem 4. [17] Let on a sequence of symbolic images {Gt} of a homeomorphism f
a sequence of flows {mt} be defined, and the maximal diameter dt of coverings tends
to zero when t→ ∞. Then

• there exists the subsequence of measures µtk (constructed according to (4.4)) which
converges in weak topology to a f -invariant measure µ;

• if a subsequence of measures µtl converges in weak topology to a measure µ∗, then
µ∗ is f -invariant.

Theorem 5. [17] For any neighborhood (in weak topology) U of the set M(f) there is
a positive number d0 such that for any covering C with the diameter d < d0 and any
flow m on a symbolic image G with respect to C, the measure µ constructed according
to (4.4) by m, lies in U .

5. Metric entropy

Let µ be a normed invariant measure of a homeomorphism f : M → M and
C = {M1,M2, · · · ,Mm} a measurable partition of the manifold M .

Definition 6. The entropy of the partition C is defined as

H(C) = −
∑
i

µ(Mi) lnµ(Mi).

Construct a covering CN which consists of nonempty intersections of the form

Ai1 ∩ f−1(Ai2) ∩ · · · ∩ f−N+1(MiN ).

If such an intersection is nonempty then the sequence i1, i2, · · · iN is admissible coding
with respect to the covering C.

The metric entropy of f for the covering C is defined as

H(f, C) = lim
N→∞

1

N
H(CN).

The existence of the limit follows from the Polya lemma.

Definition 7. The entropy of f for an invariant measure µ is defined as

h(f, µ) = sup
C
H(f, C),

where sup is taken over all measurable finite partitions.
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The connection between topological and metric entropy is given by the following
theorem.

Theorem 6. [5, 8] The topological entropy of a homeomorphism f is the least upper
bound of metric entropies

h(f) = sup
µ
h(f, µ).

6. Stochastic Markov chains

Stochastic Markov chain [7, 13] is defined by a set of states of a system {i =
1, 2, . . . , n} and the matrix of transition probabilities Pij from a state i to state j.
Such a matrix is called stochastic if it satisfies the conditions Pij ≥ 0 and

∑
j Pij = 1

for every i. A probabilistic distribution p = (p1, p2, . . . , pn),
∑

i pi = 1 is said to be
stationary if

(p1, p2, . . . , pn)


P11 P12 . . . P1n

P21 P22 . . . P2n

· · . . . ·
Pn1 Pn2 . . . Pnn

 = (p1, p2, . . . , pn),

i.e. p is a left eigenvector of P .
We show that there is a one-to-one correspondence between a Markov chain and a

flow on a graph in which vertices correspond to the states with positive measure.
Let m = {mij} be a flow on a graph G. The measure of a vertex i equals mi =∑
jmij =

∑
kmki. If mi ̸= 0 then the vertex {i} is necessary recurrent. It is easy to

verify that any flow m = {mij} on G generates a stochastic Markov chain in which the
states are vertices with nonzero measures, and the transition probabilities from i to j
are calculated as

Pij =
mij

mi

.

In this case the stochastic matrix P = (mij/mi) has the stationary
distribution coinciding with the distribution of the measure m over the vertices
(m1,m2, . . . ,mn). This follows from the equality

(m1,m2, . . . ,mn)


m11

m1

m12

m1
. . . m1n

m1
m21

m2

m12

m2
. . . m2n

m2

· · . . . ·
mn1

mn

mn2

mn
. . . mnn

mn

 = (m1,m2, . . . ,mn).

Thus, any flow m = {mij} on a graph G generates a stochastic Markov chain for which
the distribution of the measure (mi) on vertices is stationary.

Now we prove the inverse fact: for any stochastic matrix P = (Pij) and its stationary
distribution p = (pi) there exists a flow m = {mij} on a graph G for which the
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distribution of the measure on vertices coincides with the stationary distribution, i.e.
mi = pi.

Actually, let P be a stochastic matrix and pP = p. Consider a graph G which has
n vertices {i}, and the edge i → j there exists if Pij > 0. Construct the distribution
on edges mij = Pijpi and show that the distribution is a flow on G. As P is stochastic
then

∑
j Pij = 1 for any i. Hence∑

j

mij =
∑
j

Pijpi = pi
∑
j

Pij = pi.

As pP = p then
∑

k pkPki = pi, so∑
k

mki =
∑
k

pkPki = pi =
∑
j

mij,

i.e for the distribution mij the Kirchoff law holds. Moreover,∑
ijmij =

∑
i pi = 1.

From the above it follows that the construction of a flow on a graph results in
obtaining a Markov chain.

7. Flow entropy

The developed technique may be applied to estimate metric entropy. Let for a
mapping f and a covering C a symbolic image G and a flow m = {mij} be constructed.
Any flow m may be considered as the approximation to an invariant measure µ, if the
diameter of C is small enough. The flow m on G generates the Markov chain in which
the states coincide with vertices of G, and transition probabilities are defined as

pij =
mij

mi

.

The matrix P = (pij) has the stationary distribution (m1,m2, . . . ,mn) for which
entropy is calculated by the formula (see [13], p. 443)

hm = −
∑
i

mi

∑
j

pij ln pij.

Substituting pij = mij/mi we obtain

hm = −
∑
i

mi

∑
j

mij

mi

ln

(
mij

mi

)
= −

∑
ij

mij ln

(
mij

mi

)
=

−
∑
ij

mij lnmij +
∑
ij

mij lnmi = −
∑
ij

mij lnmij +
∑
i

mi lnmi.

ISSN 0203–3755 Динамические системы, 2019, том 9(37), №2



130 G. S. OSIPENKO, N. B.AMPILOVA

By this means entropy can be calculated by the flow mij as

hm = −
∑
ij

mij lnmij +
∑
i

mi lnmi. (7.1)

The last equality allows estimating the entropy of f for the invariant measure µ , where
the flow m is an approximation of µ.

8. Flow with maximal entropy

Let Π be the matrix of admissible transitions for a graph G. Our objective is to
construct the flow which has maximal entropy among all the flows on G. As any flow is
grouped on a component of recurrent vertices, it may be thought that G consists from
one component.

Theorem 7. There is a flow m on G such that:

hm = h(G) = lnλ.

Proof. 1. Eigenvalues of any real matrix A = (aij) coincide with the eigenvalues of the
transposed (conjugate) matrix A∗. Really, as detA = detA∗, then

det(A− λE) = det(A− λE)∗ = det(A∗ − λE).

Hence to an eigenvalue λ of A corresponds the conjunctive eigenvalue λ of A∗. The
roots of a real characteristic polynomial are either real or complex-conjugate, hence
the eigenvalues of the matrices A and A∗ coincide.

2. Let A be the matrix of admissible transitions of a graph G and λ be the
maximal eigenvalue from the Perron-Frobenius theorem. Then for A there exists a
left eigenvector e with nonnegative coordinates ei,

∑
i ei = 1, such that

eA = λe, A∗e = λe.

Hence for every i we have ∑
j

ajiej = λei, (8.1)

which leads to the equality ∑
j

ajiej
λei

= 1

for every i. Hence a matrix of the form

P =

(
pij =

ajiej
λei

)
is the stochastic matrix for which vector e is a stationary distribution:

eP = e.
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The distribution on edges i→ j defined by

mij = pijei =
ajiej
λ

is the flow m on the graph G such that the measure mi of the vertex i equals ei. The
entropy of m is calculated by the formula

hm = −
∑
ij

mij lnmij +
∑
i

mi lnmi.

Hence
hm = −

∑
ij

ajiej
λ

ln
ajiej
λ

+
∑
i

ei ln ei.

Here we assume that 0 ln 0 = 0. That means that the sum is taken over i, j for which
aij = 1. Thus we obtain

hm = −
∑
ij

ajiej
λ

(ln aij + ln ei − lnλ) +
∑
i

ei ln ei =

∑
i

(∑
j

ajiej
λ

)
lnλ−

∑
i

(∑
j

ajiej
λ

)
ln ei +

∑
i

ei ln ei =

lnλ
∑
i

ei −
∑
i

ei ln ei +
∑
i

ei ln ei = lnλ.
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