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Abstract. We describe computational difficulties that may arise in the numerical solution of the
stationary problem of classical electrodynamics with non-point particles [1]. These difficulties are
associated with the presence of a small parameter in this theory, which takes into account the curvature
of spacetime caused by the existence of a non-point charged particle. The energy of a gravitational
coupling almost completely “eats"the electromagnetic energy of a particle. To calculate the observed
particle mass, it is necessary to calculate these two opposite-sign contributions to the particle mass
with an accuracy greater than 21 significant digits. Such unprecedented requirements for accuracy did
not arise earlier in any problem of theoretical physics.
Keywords: non-point leptons, Stoney’s mass, electromagnetic mass, gravitational coupling energy.

1. Introduction

The author’s article [1] presented a new formulation of classical electrodynamics,
which does not contain point charges. The non-point charges of this theory are some
eigenstates of the current field J i. The 4-current J i (more precisely, J i is the density
of 4-current) inside the particle is a space-like vector: J iJi < 0. The motivation for
the space-likeness of the current J i is presented in [1]. The condition of the space-like
current means that in the theory [1] the 4-current J i has no mechanical interpretation.
The space part J of the 4-current J i cannot be interpreted in terms of a motion, a
space-transfer of a charge density ρ. Within the framework of this theory, the 4-current
J i = {ρc,J} is the primary physical object, whose properties cannot be expressed in
terms of the known properties of some other, simpler physical objects.

Within the framework of the theory [1], the electromagnetic field inside the particle
is described by a vector dyad consisting of two 4-vectors: 4-current J i and 4-potential
Ai. Inside the particle, the current J i is a space-like vector. On the outer boundary of
a non-point particle, the 4-current J i is an isotropic 4-vector: J iJi = 0. This boundary
condition of the 4-current isotropy implicitly determines the outer boundary of the
particle. On this boundary, the derivatives of the 4-potential Ai are continuous. The
components Ai on the surface of a particle can undergo a discontinuity. Outside of
charges, the current J i is absent, and the 4-potential Ai satisfies the homogeneous
Maxwell equations. In the framework of the classical theory [1], the 4-current J i is
taken into account in the Lagrangian density by the term LJ quadratic in the current:
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LJ = −1
2
aJ iJi. For dimensional reasons, the constant factor a in LJ can be written as

a =
(
r0
c

)2, where c is the speed of light, and r0 is the new fundamental constant
of length dimension. The constant r0 is some estimation of the size of non-point
particles. It is well known that, up to distances of ∼ 10−16 cm, massive leptons do not
demonstrate the presence of any internal structure in particle scattering experiments.
Therefore, r0 < 10−16 cm. Below it is shown that the real particle size is much smaller
than this experimental upper limit. Small particle sizes1 mean a high density of the
components of the energy-momentum tensor of the currents and the electromagnetic
field T ij inside the charge and in its vicinity. This means that classical electrodynamics
of non-point particles requires taking into account the curvature of space-time inside
and around the particles [1]. Consequently, the electrodynamics equations of non-point
particles must be solved in a Riemannian space-time with geometry which obeys the
Einstein equations and is unknown before the solution. When calculating the mass
and angular momentum of a lepton, it is necessary to take into account not only the
contribution of the tensor T ij. It is necessary to take into account the contribution
made to these integral characteristics by the pseudo-tensor of the energy-momentum
of the gravitational field tij. This need to take into account the contribution tij to the
integral characteristics of particles gives rise to the computational problem of such a
difficulty, which, apparently, no one in the computational mathematics has ever faced
before.

2. Dimensionless parameters of classical electrodynamics of
non-point particles

The system of equations of classical electrodynamics of the non-point participles
[1] includes the Einstein equation. Consequently, the theory contains a gravitational
constant G. This means that along with the unknown fundamental constant r0, the
theory contains another constant of the dimension of length. This is the so-called “the
Stoney’s length” [3] rs : rs = e

c2

√
G = 1.381 · 10−34 cm, where e is the value of the

electric charge of an electron. In the article [1] it was suggested that the value of rs
characterizes the dimensions of some current-free internal cavities inside the particles.

The theory [1] also contains some characteristic quantity having the dimension of
mass, so-called “the Stoney’s mass” ms : ms = e√

G
= 1.859 · 10−6 g2. Note that “the

Stoney’s units” rs and ms appeared in theoretical physics in 1881, i.e. earlier than
1We are talking only about massive leptons. The study of hadrons in the framework of the approach

[1] requires the construction of the classical theory of the Yang-Mills octuplet field, consisting of the
octuplet dyad: the 4-current octuplet and the 4-potential octuplet. The author’s article [2] gives a
general idea of a such theory. Quarks in theory [2] are one-current extended objects immersed in a
triplet or a quadruplet of potentials that form a subset of the potential octuplet that is closed relative
to the vector product in a vector octuplet. This vector product is specified by means of the structure
anti-symmetric 3-symbol of the group SU(3). This combination of three or four potentials forms what
is commonly called the color of the quark. There are 8 quarks in theory [2], two of which are not yet
open.

2The British-Irish physicist and astronomer George Johnstone Stoney not only introduced the
fundamental system of units of measurement of physical quantities, but also proposed in 1874 a new
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the Planck units that are more common for modern physicists: the Planck mass is
mp =

√
~c
G

= 2.176 · 10−5 g and the Planck length is rp =
√

G~
c3

= 1.616 · 10−33 cm
(~ is Planck’s constant). We believe that in the classical theory [1], the appearance of
Planck’s constant and, accordingly, of Planck units of length and mass is completely
inappropriate.

The presence in the theory [1] of two constants with dimension of a length means
that the classical electrodynamics of non-point particles “at the entrance” to the theory
contains the dimensionless parameter κ = rs

r0
. The presence of this parameter “at the

entrance” to the theory – it is very reasonable to assume that it is a small parameter
– makes it possible to calculate and explain some small parameters appearing “at the
output” of the theory. The theory [1] allows, in principle, to calculate the masses of
charged leptons, expressing them, for example, through the Stoney’s mass. However,
such a dimensionless electron mass µ is monstrously small: µ = m

ms
= 0.49 · 10−21 (here

m is the electron mass in grams).
The author provided an estimate of the possible value of the fundamental constant

r0 : r0 ≈ (rT rs
2)

1/3 ≃ 2 · 10−27 cm [5], where rT = e2

mc2
is the Thompson radius of the

electron3.
It is unlikely that this estimate of the constant r0 is very reliable, because r0 is

a fundamental constant that characterizes the structure of the world as a whole, and
rT is a constant that characterizes only one particle (electron). But there is currently

no other estimation for r0. From this estimation for r0 it follows that κ ≃
(

m
ms

)1/3
≃

0.8 · 10−7 and, accordingly, µ ≃ κ3. These estimations for r0 and κ are only by orders
of magnitude. The relationship between µ and κ may contain a factor of O(1).

This fundamental relation µ ≃ κ3 is based on the qualitative and not very
reliable arguments given in [5]. Generally speaking, it should be an exact quantitative
consequence of the numerical solution of the stationary problem about geometry, charge
and current distribution for classical model of a non-point lepton [1]. However, this
stationary problem has not yet been solved, and the difficulties of its numerical solution
now seem insurmountable.

3. Small parameters of the theory [1] and high demands on the
accuracy of the numerical solution

Without having the solution of the stationary single-particle problem of classical
electrodynamics of non-point particles, we can present here only qualitative
considerations illustrating the difficulty of numerically solving this problem. To
estimate the observed lepton mass m, we can offer the following formula:

m = mem −
UG

c2
, (3.1)

term “electron” as the name of an elementary particle that was not yet open at that time ([4], p. 82 ).
3In formula (39) of article [4] in this expression, instead of the Stoney’s length rs, the Plank’s

length rp appeared. The author believes now that the appearance of Planck units is inappropriate in
the classical theory.
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where mem is the electromagnetic mass (it is the integral taken over the entire three-
dimensional space in the particle rest system from the component T 00 of the energy-
momentum tensor of the current and the electromagnetic field). The value – UG is
the energy of the gravitational coupling (it is the integral taken over the entire three-
dimensional space in the particle rest system from the component t00 of the pseudo-
tensor of the energy-momentum of the gravitational field).

Electromagnetic mass of the particle mem for dimensional reasons can be written
in the following form:

mem = A
e2

r0c2
, (3.2)

where A is some dimensionless constant. It can be assumed that A ≫ 1, since the
contribution to mem is made not only by the Coulomb energy (the integral of ρ2),
but also by the interaction energy of the currents (the integral of J2). By virtue of
the space-likeness of the 4-current J2 ≥ ρ2c2. In addition, the values of ρ2 and J2 can
increase with the deepening from the outer surface into the depth of the charge.

The energy of the gravitational coupling UG can be estimated by the following
“Newtonian” formula:

UG = BG
m2

em

r0
, (3.3)

where B is some dimensionless constant. We venture to assume that B ≫ 1 and,
moreover, we venture to assume that the factors A and B have the same order of
magnitude.

Using formulas (3.1), (3.2) and (3.3) to for an estimation the observed lepton mass
m, one can get the following expression:

m = ms · AκR, (3.4)

where R is the “reducing factor”;

R = 1− ABκ2. (3.5)

Earlier we found that for an electron in order of magnitude:

µ ≃ m

ms

≃ κ3.

Therefore, from (3.4) it follows that

AκR ≃ κ3. (3.6)

Taking into account (3.5), condition (3.6) can be satisfied if we assume that the
unknown factors A and B have order порядок κ−1:

A =
a

κ
, B =

b

κ
, (3.7)
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(a = O(1), b = O(1)) ,

moreover, the values of a and b, appearing in (3.7), are related by a rigid relation:

R = 1− ab = λκ3. (3.8)

(λ = O(1)) .

Equation (3.8), connecting a and b, looks extremely unattractive. It resembles the
well-known “fine-tuning” problem [6].

The term “fine-tuning” is used for the high-precision adjustment of some parameters
of a physical theory (in this case, parameters a and b) in order to reconcile the theory
with observations.

However, relations (3.7) and (3.8) only by appearance remind of the “fine-tuning”
problem. Parameters A and B are not external parameters, the value of which can be
specified arbitrarily. They should be found in the numerical solution of the stationary
single-particle problem of classical electrodynamics with non-point leptons, described
in [1]. This numerical solution, if and when it will be obtained, either demonstrates the
validity of the estimation of the reducing factor R (3.8) – and then the theory [1] agrees
with the observed facts (at least qualitatively) – or does not confirm the estimate (3.8),
– and then the theory [1] should be rejected.

If theory [1] is suitable for describing experimental facts, then relation (3.8)
demonstrates the existence of a giant computational problem. Electromagnetic energy
and the energy of a gravitational coupling compensate each other with an accuracy of
20 significant digits. On the Stoney’s mass scale, leptons are practically massless4. In
order to obtain meaningful results when calculating the mass and angular momentum
of a charged particle, these integral characteristics should be calculated, providing at
least 21 reliable significant figures. The ratio of the muon mass to the electron mass is
known with an accuracy of 7 significant digits. In order to reproduce this accuracy in
calculations, the integral characteristics of two solutions with different topology must
be calculated with an accuracy of 28 significant digits. Accordingly, when numerically
solving this problem, for example, using the grid method, calculating local values of
variables (the potential and current components, the electromagnetic field tensor, the
metric tensor components and the Christoffel symbols), it is necessary to produce
with an adequate margin of accuracy (probably at least 24-25 significant digits for
comparison of integral characteristics with experience in order of magnitude, or with
an accuracy of 31-32 significant figures to ensure accuracy in integral characteristics
comparable to the experimental one). At present, there are no such exact numerical
methods for solving a system of nonlinear partial differential equations in domains
with unknown boundaries. In the past, not a single problem of theoretical physics and
continuum mechanics put such high demands on the accuracy of calculations. However,

4Here we are faced with the “the inverted hierarchy problem” [7] the gravitational interaction is
not at all extremely weak compared to other types of interaction (as is customary to think about it
now). On the contrary, gravity almost completely “devours” the energy contributions of other types
of interaction. The world is almost massless.
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at present, there is no other classical theory, except [1], which would allow, in principle,
to hope for the calculation of the masses of leptons5. Relation (3.8) can be checked by
performing model calculations for given and not very small κ, for example, κ ∼ 0.1 and
κ ∼ 0.01. Of course, any attempt to solve this problem numerically may be preceded by
an attempt to prove a theorem on the existence of solutions to this problem. Currently,
such evidence is missing.

The considered problem is a very rare example of the problem of theoretical physics,
which requires proof of a theorem on the existence of a solution. Physicists usually
do not have a need for theorems of this kind. In the scientific folklore of theoretical
physics on this subject, the mocking phrase of the ruthless W. Pauli is known, allegedly
pronounced in the 40s of the twentieth century to the famous mathematician John
von Neumann: “Wenn Physik hauptsächlich aus Beweisen bestehen würde, wäre von
Neumann ein guter Physiker geworden” (If physics consisted mainly of proofs, von
Neumann would have become a good Physicist)6.

However, this is exactly the case when such a theorem is important. It is unlikely
that anyone will decide to tackle the numerical solution of such a problem with
unprecedentedly high demands on accuracy, without having confidence in the existence
of a solution. Possible classical solutions to this problem may differ from each other
in the topology of the external and internal boundaries of the current and charge
distribution in the particle volume. These topologically different solutions (if they exist)
are classical models of various massive leptons. If we confine ourselves to axisymmetric
solutions, then there are only three solutions: the outer boundary with the topology of
the sphere is compatible with the existence of the inner boundary with the topology
of the sphere or the topology of the torus; the outer boundary with the topology of
the torus admits the existence of an inner boundary with the topology of the torus. By
now, three massive leptons are really known: an electron, a muon and a triton.

4. Questions that can be answered by the theorem on the
existence of solutions for the theory [1]

Reducing the equations of classical electrodynamics with non-point charge [1] to
a dimensionless form, it is convenient to choose the values of e, c and r0 as units of
measurement. The equations of electrodynamics themselves in such a dimensionless
record do not contain any parameters7. The dimensionless constant of the theory
appears in the Einstein equation:

Rik −
1

2
gikR = Gr · Tik (4.1)

5These monstrous computational difficulties are the price that must be paid for the abandonment
of the existing physics with point particles, divergences and renormalizations.

6Unfortunately, the author cannot indicate the source of this phrase. This is probably one of the
many jokes about Pauli.

7The theory [1], in addition to Maxwell’s equations, contains one new and very simple equation of
theoretical physics, relating 4-current and 4-potential in the 4-current region: J i +Ai = 0.
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where Gr = 8πκ2. Gr is the dimensionless Einstein gravitational constant expressed in
terms of the parameter κ.

In equations (4.1) (see [8], § 95) gik is the metric tensor, Rik is the Ricci tensor, R
is a trace of the Ricci tensor.

It follows from the Einstein equations (4.1) that, where the values of the components
of the tensor Tik are of the order of unity (Tik = O(1)), the components of the Ricci
tensor satisfy the estimate Rik = O(κ2). However, when calculating the components
of the energy-momentum pseudo-tensor of the gravitational field tik (see [8], § 96),
it is easy to verify that tik = 1

2Gr
Θik, where the components of the very cumbersome

pseudo-tensor Θik, constructed from the metric tensor and the Christoffel symbol, have
the same order of magnitude as the Ricci tensor. Consequently, the components of the
pseudo-tensor tik seem to “forget” about the smallness of the gravitational constant
Gr and have the same order as the components of the tensor Tik: the energy of the
gravitational coupling has the same order of magnitude as the electromagnetic energy.

In units of e, c, r0, the mass unit m0 is the value m0 = e2

r0c2
. This value is of the

order of 10−13 g. In these units, the Stoney’s mass ms is defined by the expression
ms =

1
κ
. Accordingly, the above considerations suggest that the observed electron mass

m in units of m0 satisfies the estimate m = O(κ2).
Constructing the existence theorem for the theory [1], it is necessary to establish

the existence conditions for the solution of the stationary single-particle problem. In
particular, it is necessary to establish: how many normalization conditions can be
used? For what values of the parameter κ do exist solutions? (It seems plausible to
assume that solutions exist only for sufficiently small κ). In addition, it is necessary
to prove that m > 0 (the gravitational coupling energy cannot exceed the particle’s
electromagnetic energy), and also to prove (or disprove) the ordinal estimation for
m given above: m = O(κ2). It is also necessary to establish whether the angular
momentum of a classical lepton is uniquely determined for a given topology of the
particle boundaries.

It would be rash to expect that the classical electrodynamics of non-point charges
[1] can accurately predict the parameters of leptons in full accordance with experience.
The goal of developing a classical theory of this type (as Paul Dirac repeatedly insisted)
is to be a good basis for the development of a quantum relativistic theory free from
regularization and renormalization. A sketch of such a quantum theory is contained in
the author’s article [9].

In essence, the classical relativistic theory of leptons [1], like the non-relativistic
Bohr’s theory of the atom, can, in certain situations, correspond to experience only
when some additional “quasi-Bohr’s” conditions are imposed on the solution. One such
“quasi-Bohr’s” condition must be imposed when normalizing to a unit of a full charge
of a lepton: staying within the framework of classical physics, we do not know why all
massive leptons have the same electric charge. We simply use this fact to normalize the
solutions.

Without having a theorem on the existence of a solution, we do not know whether
we have the right to set another “quasi-Bohr’s” condition, normalizing own angular
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momentum M to its empirical value: M = 1
2α

(in units of angular momentum e2

c
),

where α = e2

~c is the fine-structure constant. If, to construct a solution, we have the
right to use only one normalization condition (the “quasi-Bohr’s” condition for charge
normalization), then we must simply humbly calculate own angular momentum M
within the framework of the theory [1] and compare it with the experimental value:
this will be a calculation of the quantum constant Planck ~ in the framework of the
classical theory!

Additional difficulties in this problem are caused by the pseudo-tensor nature of tik:
local values of these quantities (which must be calculated with an accuracy of about
25-30 significant digits!) are generally not physically meaningful and can be arbitrarily
changed by a simple coordinate transformation. Only integrals over the entire three-
dimensional space have physical meaning. Those researchers who venture to tackle the
question of the existence of stationary solutions of the theory [1] may first consider a
simpler model problem of the lepton structure in a world without gravity. This is a
flat world with the geometry of Minkowski and without the energy of a gravitational
coupling. Such a world without gravity cannot be compared with the world in which we
live, but the proof of the existence theorem and the numerical solution of the problem
will undoubtedly be simpler (there is no small parameter κ, which is quite “bad” in the
theory [1]: it is in the numerator in some equations and in the denominator in other
expressions).

Probably, it would be of some interest to study the model problem with the opposite
nature and with the apparent absence of matter – that is, with full local “devouring” of
electromagnetic energy by the energy of gravitational coupling. Within the framework
of such a model, the electrodynamics equations are not taken into account, and in the
right-hand part of the Einstein equations the tensor Tik is replaced by – tik. This model
does not contain a constant of gravity. This model is questionable from the point of
view of mathematics (a tensor is equated to a pseudo-tensor), but if the solution to such
a problem exists in a certain coordinate system, then it describes a certain “geometric
trap” that does not contain matter.

H. Kleinert considered a model in some sense related to such a geometric trap [10].
He studied the singular solutions of homogeneous Einstein equations as a model of dark
matter.
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