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How to check if one-dimensional solenoid in
the sense of Williams can be realized as
hyperbolic attractor of surface
diffeomorphism
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Abstract. In the paper, an algorithm is presented that allows for a given one-dimensional solenoid in
the sense of Williams to answer the question: does a surface diffeomorphism with a one-dimensional
hyperbolic attractor exist such that the restriction of the diffeomorphism to this attractor is
topologically conjugate to the shift automorphism of the given solenoid.
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1. Introduction

In 1967 R.Williams [1] proposed the concept of generalized solenoid for modeling
the dynamics generated by a diffeomorphism of a smooth manifold with a hyperbolic
expanding attractor. The initial results of his theory are the following theorems. The
conditions (S1–S4) specified in them will be formulated below.

Theorem 1 (Williams [2]). Let M be a smooth manifold, U ⊆ M be an open set, f :
U →M be a smooth embedding, Λ ⊂ U be a one-dimensional hyperbolic attractor for f .
Then there exsist a branched 1-manifold K and a smooth map φ : K → K satisfying the
conditions (S1–S4) such that the solenoid defined by the pair (K,φ) is homeomorphic Λ,
and its shift automorphism is topologically conjugate to the restriction f |Λ.

Theorem 2 (Williams [2]). Let K be a branched 1-manifold and φ : K → K be a
smooth map satisfying the conditions (S1–S4). Then there exist a smooth manifold M ,
an open set U ⊆M , a smooth embedding f : U →M , and a one-dimensional hyperbolic
attractor Λ ⊂ U for f such that the solenoid defined by the pair (K,φ) is homeomorphic
to Λ, and its shift automorphism is topologically conjugate to f |Λ.

For brevity, the statement of the theorem 2 will be said that the given solenoid can
be realizable as an attractor on the manifold M .

Question. Under what conditions additional to those of the theorem 2 it can be
confirmed that dimM = 2?

In the proposed paper, an algorithm will be presented with which the following
questions can be answered for given solenoid.
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1. Whether the given solenoid is realizable as an attractor on an orientable surface
and, if so, what is the minimal genus of a such surface? In this case the algorithm
defines whether or not the embedding f generating the attractor preserves the
orientation of the surface.

If the answer to the first question is negative, then

2. Whether the given solenoid is realizable as an attractor on an non-orientable
surface and, if so, what is the minimal genus of a such surface?

2. Definitions and combinatorial description of solenoid

Let K be finite graph (one-dimensional CW-complex) and a its edge (open 1-cell),
semi-edge is component of the set a \ {x}, where x ∈ a. Two semi-edges are said to be
equivalent if their intersection is semi-edge also. The equivalence class of semi-edges
contained in a given edge is called its end. The end e of any edge is called to be incident
to the vertex O if it is incident to semi-edge, which is a representative of the given end.
The number of ends incident to a given vertex is called its valence.

Definition 1. Graph K is called branched (one-dimensional) manifold if the following
conditions hold

(BM1) There are no vertexes of valency 1.

(BM2) For each vertex the partition of the set of ends of incident edges onto two
nonempty disjunct subsets is fixed.

The ends belonging to one of these subsets will be called outgoing from a given
vertex, and the ends belonging to the other one will be called incoming into it.

Vertices of the graph will be called branch points of branched manifold K.

The smoothness of branched manifold will be understood in the sense of the
following definition of the smoothness of the arcs lying in it. By an arc in K we mean
an image by the action of a continuous mapping γ of a segment of a real line into K,
which is a local homeomorphism onto image.

Definition 2. The arc γ ⊂ K is called to be smooth if for each t0 such that γ(t0) is
branch point there exists ε > 0 such that

1) arcs γ|(t0−ε,t0) and γ|(t0,t0+ε) are semi-edges belonging to ends of some edges
incident to this vertex γ(t0);

2) these ends belong to distinct subsets onto which the set of all edges incident to
γ(t0) is parted according to condition (BM2), i.e. one of this ends is incoming
while the other is outcoming.
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ONE-DIMENSIONAL SOLENOID IN THE SENSE OF WILLIAMS 265

A continuous map of a branched manifold K into a branched manifold K ′ (into a
smooth manifold M) is called smooth if the image of every smooth arc in K is a smooth
arc in K ′ in the sense of previous definition (smooth arc in M in the usual sense).

Definition 3. Let K be branched manifold and φ : K → K be smooth map such that
the following conditions hold

(S1) the set of all branch points of K is invariant under φ;
(S2) the non-wandering set of φ coincides with K;
(S3) φ is expanding in some metric;
(S4) for each branch point there exists a neighborhood U and an integer m > 0

such that φmU is a smooth arc.
Solenoid in the sense of Williams is the limit of the inverse spectrum

K
φ←− K

φ←− K
φ←− . . . ,

and the homeomorphism φ∞ : K∞ → K∞ defined by

φ∞ : (x1, x2, x3, . . .) 7→ (φx1, x1, x2 . . .).

is called its shift automorphism.

Combinatorial description of the branched manifold 1) Let n be the number
of edges of K. We enumerate in some way their ends by subscripts from the segment
1, 2n of the natural series and define the map σ : 1, 2n→ 1, 2n, assuming that j = σ(i)
if i, j are the numbers of the ends of the same edge. It is clear that σ is a permutation
on the set 1, 2n, decomposing into a product of cycles of period 2.

2) Let m be the number of vertices of the graph K. We enumerate them in some
way by indices from the segment 1,m of the natural series and denote by t+k and t−k ,
respectively, the number of outgoing and the number of incoming ends of the edges
for the vertex number k. Denote by T = (t+1 , . . . , t

+
m; t

−
1 , . . . , t

−
m) the sequence of 2m

numbers thus defined.
Thus the branched manifold defines a pair (σ, t). Conversely, each pair of (σ, t),

where σ is a permutation of the set 1, 2n, all cycles of which have a period 2, and
T = (t+1 , . . . , t

+
m; t

−
1 , . . . , t

−
m) is a sequence of 2m natural numbers with the condition∑m

k=1(t
+
k + t−k ) = 2n defines a branched 1-manifold. Therefore, we call the pair (σ, T )

associated with the branched manifold in the manner described above configuration
of the branched 1-manifold. Of course, the configuration is ambiguous: it depends on
the choice of the numbering of the ends of the edges, the numbering of the vertices,
and which of the subsets of the ends in (BM2) are declared incoming and which are
outgoing. Nevertheless, it is clear that knowing one of the configurations of a given
branched manifold, one can write out all the others using a formal algorithm.

Combinatorial description of the map of branched manifold defining the
solenoid. We enumerate the edges of the graph K with the index i ∈ 1, n, endow
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each of them with orientation, and denote the oriented edge number i by ai. Through
ai we denote geometrically the same edge with opposite orientation. Let φ : K →
K be a smooth map satisfying condition (S1). Then each edge ai is partitioned by
preimages of branch points into arcs such that the restriction of φ to each of them is
one to one map onto some edge that can be overpassed in either a positive or negative
direction. Therefore, with each edge ai the word wi = φ(ai) in the alphabet A =
{a1, . . . , an; a1, . . . , an} can be associated. From the smoothness condition it follows
that this word is irreducible, i.e. does not contain subwords of the form aiai and aiai.
Thus, with the map φ an ordered set of words w = (w1, . . . wn) be associated.

Conversely, a set of irreducible words w = (w1, . . . wn) defines a unique, up to
homotopy, map φ of the graph K continuous on each edge and which is a local
homeomorphism onto image in a neighborhood of each point that is not a branch
point.

Now we establish the conditions under which this map is continuous at the branch
points and satisfies the conditions (S1–S4) of the definition of solenoid.

Let’s start with agreeing on the numbering of the vertices of the graph and its
edges.

1. We number the vertices Ok with the index k ∈ 1,m.
2. Enumerate the ends of the edges, satisfying the condition: the outgoing ends for

the vertex O1 get numbers from 1 to t+1 , outgoing ends for O2 — from t+1 +1 to t+1 + t+2
end so on; incoming ends for the vertex O1 get numbers from t+1 to t+ t−1 , incoming
numbers ends to O2 — from t+ t−1 + 1 to t+ t−1 + t−2 and so on, where t =

∑m
k=1 t

+
k .

3. We enumerate the edges ai with the index i ∈ 1, n lexicographically with respect
to the numbering of their ends: the smaller is the minimal number of two ends of the
edge, the smaller is the number of the edge.

4. Orient the edges considering the positive direction from the end with the smaller
number to the end with the larger one.

The end of the edge ai, which has a smaller number in the numbering of the ends
(2), will be called first end, and the other end call the second one. These ends will be
denoted by ai and ai respectively. (The fact that the same symbol denotes different
things will not lead to misunderstandings, but it will be convenient.) The number of
the first end of the edge ai in the ”continuous” numbering of the ends will be denoted
beta−(i), and the number the second denote β+(i). The number of the edge that has
one of its ends the end number j in continuous numbering will be denoted α(j). Thus,
we obtain three maps of the sets of indices α : 1, 2n→ 1, n; β−, β+ : 1, n→ 1, 2n. It is
easy to see that these functions are determined by the conditions

α(1) = 1, , α(i) = α(σ(i)), α(i) < α(j)⇔ min{i, σ(i)} < min{j, σ(j)};

β−(j) := min{i : α(i) = j}; β+(j) := max{i : α(i) = j};

The passage at the vertex Ok will be called an ordered pair of characters (two-letter
word) in the alphabet A = {ai, ai : i ∈ 1, n} denoting ends of edges in this vertex, such
that one of them belongs to the upper partition and the other to the lower one.
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ONE-DIMENSIONAL SOLENOID IN THE SENSE OF WILLIAMS 267

We will call pass ℓiℓj image (where ℓi is ai or ai, and ℓj is aj or aj) to be two-letter
word, the first letter of which is the last letter of the word φ(ℓi) and the second is the
first letter of φ(ℓj).

Then the condition of continuity of the map φ be

(SC0) Each two-letter subword of each word wi = φ(ai) is a passage at some vertex.

And the condition of smoothness of the map φ be

(SC1) For each vertex, all its passes images are the passages at the same vertex.

Thus, calculating the images of passes, we can check the continuity condition φ,
and at the same time to find the map of the vertices ϖ defined in the first part of the
following

Definition 4. 1. The map of the vertices ϖ is such permutation that

φ(Ok) = Oϖ(k).

2. The intersection matrix G = (gij) of the map φ is defined by

gij := #{ai, ai ∈ wj},

where # denotes the number of elements in finite set.
3. The intersection vector g = (gi) of the map φ is defined by

gi :=
∑
j

gij.

4. The sequence E = {ε1, . . . , εm} of signs εk = ±, depending of the way by which the
map φ turns the directions of passages on the vertex Ok into directions of passages
in Oϖ(k):

εk =

{
+, if “ingoing→ outgoing” 7→ “ingoing→ outgoin” ;
−, if “ingoing→ outgoin” 7→ “outgoing→ ingoing” .

Lemma.
1. Conditions (S2) and (S3) together are equivalent to

(SC2) The intersection matrix G is primitive i.e. some power of it is a positive matrix.
2. Condition (S4) is equivalent to

(SC3) for each vertex, some iteration of all its passes is the same pass, up to the
reverse.

Proof. According to the Perron-Frobenius theorem primitiveness and integerness of the
matrix G imply that it has eigenvalue which is greater than one (Perron eigenvalue),
which corresponds to positive eigenvector (Perron eigenvector). Therefore, it is possible
to define on K a Lebesgue measure such that the length of each edge be equal to the
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corresponding component of the left Perron eigenvector, and the map will be a uniform
expanding with a coefficient equal to Perron eigenvalue. Since φ is expanding and the
matrix G is primitive, it does not have open invariant sets and the periodic points
of φ are dense in K. So primitiveness of the matrix implies conditions (S2,S3). The
converse, as well as the second statement of the lemma, is obvious.

All the above means that each one-dimensional solenoid define the set of data
⟨σ, T ;w⟩ by which it is possible to find the matrix G and the permutation ϖ. This
makes the following definition natural.

Definition 5. The collection of data ⟨σ, T ;w⟩, where σ is permutation on 1, n with
all cycles of the length 2; T = (t+1 , . . . , t

+
m; t

−
1 , . . . , t

−
m) is the sequence of 2m positive

integers (m > 1) with the sum equal to 2n; w is the ordered set of irreducible words
in alphabet A = {ai, ai : i ∈ 1, n} is called solenoidal code if the condition (SC0–SC3)
holds.

Of course, the code is determined by the solenoid ambiguously because of the
following elements of arbitrariness

1. The choice of the numbering of vertexes.
2. The choice of which of the two possible subsets of the set of the ends of the edges

incident to each vertex is considered to be the outgoing (ingoing).
3. The numbering of each of the sets of outgoing and ingoing edges of the edges.
In what follows, considering the solenoid given by any of its codes, we will save the

first two choices while we will have to consider all the codes obtaining while changing
the choice of edge ends.

This means that the sequence will not change while the σ permutation changes. The
latter implies a change in the sequence of words w occurring due to a corresponding
change in the numbering of the edges of the graph and a possible change in their
orientations. The change in the numbering of the ends of the edges is determined by
the permutation τ : 1, 2n←↩, which leaves invariant each of the subsets of the set 1, 2n
of indices of the form

t+k−1 + 1, t+k (k ∈ 1,m, t+0 = 0)

and

t+ t−k−1 + 1, t+ t−k (k ∈ 1,m, t−0 = 0, t =
m∑
k=1

t+k ).

Definition 6. We will call the permutation τ of 1, 2n which leaves invariant the above
subsets to be admissible.

If the admissible permutation is given we can to calculate the changed code
⟨στ , T ;wτ ⟩ (T is the same) as follows.

The permutation of σ is transformed into a permutation of στ , the cycles of which
are obtained from the cycles of σ follows. Let (i, j) be a cycle σ. Then it corresponds
to the cycle (τ(i), τ(j)) of στ . Of course it means that στ = τ−1 ◦ σ ◦ τ .
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ONE-DIMENSIONAL SOLENOID IN THE SENSE OF WILLIAMS 269

To calculate the sequence of words wτ , we note that the letters of the words wj

correspond to the cycles σ. Namely, if (i, σ(i), where i < σ(i), then this cycle determines
some letter aj. We will write aj ≃ (i, σ(i)), and the index of this letter can be defined
as follows. We write the permutation σ in the form of a product of such cycles, order
the factors by the first index and enumerate them according to this ordering. Then j
is the number of the cycle (i, σ(i)) in this numbering. Keeping this ordering of cycles,
replace each of them with the cycle (τ(i), τ(σ(i))), keeping a sequence of characters in
each cycle. The words wτ

k which define the map φ a′k 7→ wτ
k must be written in the

alphabetA′ = {a′i, a′i : i ∈ 1, n} the letters of which denote the same edges of the graph,
renumbered and, possibly, with a changed orientation. The letter a′j′ , denoting the same
edge of the graph as the corresponding letter aj, is defined by the cycle (τ(i), τ(σ(i)))
and its number j′ is the number of this cycle in their numbering in ascending smaller
the indices of the permutation cycles of στ . The orientation of this edge coincides with
its initial orientation i.e. a′j′ = aj, if τ(i) < τ(σ(i)), and opposite to it otherwise, i.e.
a′j′ = a−1

j .
Thus, to find the words wτ

j′ that define the map of φ in new numbering of the ends
is necessary in the correspondences aj 7→ wj to make the appropriate replacement of
letters aj and a−1

j on a′j′ and a−1
j′ .

Definition 7. We will say that the solenoid code obtained from given code by means
of the described procedure using the admissible permutation τ is τ -equivalent to the
initial one.

3. Band surfaces and codes of attractors

The solenoidal representation of a expanding one-dimensional hyperbolic attractor
Λ of a diffeomorphism f : U → M in Williams Theorem 1 is obtained as follows. A
tubular neighborhood N of the set Λ which is fibered onto (dimM − 1)-disks lying in
the stable manifolds of the points of Λ is constructed. The partition of N onto these
disks as leaves is semi-invariant with respect to f so that corresponding factorization
of N defines branched manifold and its expanding map which define the solenoid.

In the case dimM = 2 the tubular neighborhood may be constructed in the form
of band surface [3] i.e the surface Π with boundary arranged as follows.

1. There is a finite collection of simple disjoint arcs (called base segments of Π)
I1, . . . , Im of stable manifolds of some periodic points of f each of them containing
corresponding periodic point. This collection is semi-invariant i.e. f(Ik) ⊆ Iϖ(k), where
ϖ is some permutation on 1,m.

2. There are two partitions D+
k (upper partition) and D−

k (lower partition) of each
base segment Ik onto t+k and t−k segments (t+k , t

−
k > 1). Along some pairs ∆,∆′ ∈ D :=∪

kD
+
k ∪ D

−
k of these segments a band Π∆,∆′ is glued to the base I :=

∪
k Ik. The

band surface is union of this bands. What is more, if x ∈ Λ∩Π∆,∆′ then the connected
component of unstable manifold intersection W u(x)∩Π∆,∆′ containing x is the arc with
endpoints on segments ∆,∆′ (called ends of the band) and the connected component
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of stable manifold intersection W s(x) ∩ Π∆,∆′ containing x is the arc with endpoints
on two other opposite edges of Π∆,∆′ (called margins of band). The collection of all
such arcs of stable manifolds defines partition of Π onto 1-discs which is semi-invariant
and define via factorization the branched 1-manifold K and its map φ satisfying to the
conditions of definition of a solenoid.

We will also need a combinatorial description of the map f |Π introduced in [3] to
be a collection of data ⟨σ, T ,o;ϖ, Es, Eu,g,L⟩ called the code of the attractor Λ with
respect to band surface Π. These data formally are

1. σ is permutation on 1, n (n the number of bands) all whose cycles are of period 2;

2. T = (t+1 , . . . , t
+
m; t

−
1 , . . . , t

−
m) is a sequence of 2m natural numbers (m is the number

of base segments);

3. o = {o1, . . . , on} — sequence of signs ±;

4. ϖ — permutations on 1,m;

5. Es = {εs1, . . . , εsn}, Eu = {εu1 , . . . , εun} — sequences of signs ±;

6. g — integer n-vector of natural entries;

7. L = {l1, . . . , ln} finite integer sequence.

Definition 8. The data set listed above is called a formal code.

To define the geometric meaning of these data let us we introduce the following
agreements.

Let us fix a positive direction (say ”from the left to right”) on each base segment;
positive transverse direction (say ”from bottom to top”) to each of them. In the case of
orientable surface suppose that each pair of these direction define the same orientation
of the surface.

Now we assign the numbers to the ends ∆ ∈ D of the bands so that for ∆i ∈ Dκ
j

and ∆i′ ∈ Dκ′

j′ (κ,κ′ = ±) i < i′ if and only if either κ = +,κ′ = − or κ = κ′ and
j < j′ or κ = κ′, j = j′ and ∆i lies on Ij to the left of ∆i′ .

So the permutation σ be well defined and it means that the bands are glued to the
base segments along the pairs of ends of the form (∆i,∆σ(i)). The bands are numbered
in such a way that the band Πj is glued to segments ∆β−(j),∆β+(j) (β−(j) < β+(j),
α(β−(j)) = α(β+(j)) = j).

The numbers t+k , t
−
k of the sequence T denote the numbers of ends of bands which

are glued to the base segment Ik to the top and bottom, respectively.
The signs oi = − of the sequence o means that the band Πi is twisted when gluing

and oi = + in other case. In the case of an orientable surface, there are no twisted
tapes, while for non-orientable ones they should be.

The triple (σ, T ,o) is called the configuration of the band surface.
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ONE-DIMENSIONAL SOLENOID IN THE SENSE OF WILLIAMS 271

The remaining data of the code characterize the action of the map fΠ on the base
segments and bands.

Permutation ϖ shows that fΠIk = Iϖ(k).
Signs εsk are "+"ore "−"depending of whether fΠ move positive direction of Ik into

positive ore negative direction of Iϖ(k). Signs εuk means the same with respect transverse
directions.

Component gi of the vector g is the common number of component of intersection
of the band Πi with images of other bands.

Element lk of the sequence L is she number of components of intersection of images
of all bands with that component of Ik \f(Iϖ(−1)), which is to the left of f(Iϖ−1) (lk = 0
if left end of f(Iϖ−1) coincides with that one of Ik).

In [3], it is shown (Lemma 2.4.1) that the code of the attractor satisfies some
conditions that need to be formulated here. This requires the following notation. By
formal configuration (σ, T ,o) define integral vectors Vj

+ (j ∈ 0, t) and Vj
− (j ∈ t, t+ u,

t =
∑
t+j , u =

∑
t−j )

V0
+ = V0

− := 0; Vj
± := Vj−1

± + eα(j).

Here ei is the vector with all entries 0 except for i-th which is 1.

vk
+ := VTk

+ −V
Tk−1

+ ; vk
− := V

Tm+k

+ −V
Tm+k−1

+ , k ∈ 1,m

Here Tk =
∑k

j=1 t
+
j for k 6 m and Tm+k = t+

∑k
j=1 t

−
j .

In these terms, the conditions mentioned are
(FC1) ⟨Vϖ(k)

+ +V
ϖ(k)
− ,g⟩ > t+k + t−k ;

(FC2) ⟨Vϖ(k)
+ −V

ϖ(k)
− ,g⟩ = εuk(t

+
k − t

−
k );

(FC3) 0 6 lϖ(k) 6 1
2

(
⟨Vϖ(k)

+ +V
ϖ(k)
− ,g⟩ − (t+k + t−k )

)
.

Here ⟨·, ·⟩ denotes the usual scalar product.

Definition 9. The formal code is said to be admissible if it satisfies to conditions
(FC1–FC3).

In [3] the conditions (FC1–FC2) immediately included in the definition of a formal
code.

We note that condition (FC3) is especially important now, since it implies the
finiteness of the set of formal codes with given n and m, and an estimate of their
number can be easily obtained.

Solenoidal representation of attractor Λ is obtained from band surface Π and the
map f |Π as follows. Branch points (vertexes) of branch manifold K are images under
factorization of base intervals Ik and them are numbered by the same indexes. So, the
permutation ϖ is the same as permutation of branch points. Partitions of ends edges
of K onto ingoing and outgoing ones corresponds to partitions of segments Ik onto
upper and lower ends of bands D+

k and D−
k . Edges ai of K are factors of bands Πi
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and are enumerated y the same indexes. Orientation of the edge ai corresponds to the
"vertical"direction on Πi i.e. direction from its end ∆β−(i) to ∆β+(i).

The Theorem 3.1.1 [3] implies that each solenoidal representation of an attractor is
obtained by the method described above.

4. Algorithm for checking the realizability of
a solenoid on the surface

The data σ, T ,w which give combinatorial description of solenoid enables to find a
part of the data composing the code of the attractor: σ, T , ϖ,g, Eu = E . Hence, if the
solenoid is given, it is possible to enlarge these data to obtain the formal code. This
can be done in various ways of specifying missing data o, Es,L. What is more, in the
source data we can replace σ and w by performing a permissible permutation τ of the
indices. In any case, the number of opportunities to do all this is finite and can be
estimated through initial data. Thus, it is possible to consider all the various additions
of the solenoidal code to the formal code.

In [3] an algorithm for checking if the formal code is realizable by some attractor via
some band representation of it is described. It is based on the some ancillary algorithms
(subroutines in terms of computer sciences) i.e. so called Algorithms A, B and D. We
will not give a description of these algorithms here because it requires too much space,
but it is necessary to specify their input and output data along with a brief comments.

Algorithm A.
Input. Formal (n,m)-configuration (σ, T ,o).
Output. 1. The sequence B = {b0, b1, . . .} of nonnegative integers such that almost

all (but not all) of them are equal to zero.
2. The finite set of nonempty words R = {ρ1, . . . , ρb} in alphabet A = {ai, ai : i ∈

1, n}.

Comment. In the case when the configuration on input is indeed that one of
some band surface of the attractor we have b0 = 0 (it is essential for our goals),
while other elements of B define so called boundary type of the attractor (see [3] for
definition, we need not for it now). The set of words R defines some co-representation
⟨a1, . . . , an|ρ1, . . . , ρb⟩ of fundamental group of the band surface.

Algorithm B.
Input. Formal (n,m)-code ⟨σ, T ,o;ϖ, Es, Eu,g,L⟩
Output.
1. Formal configuration (σ̂, T̂ , ô).
2. Ordered set ŵ = {ŵ1, . . . , ŵn} in alphabet A = {ai, ai : i ∈ 1, n}.
3. Sequence L̂ = {l̂1, . . . , l̂m} of non-negative integers.

Comment. If the formal code on input is indeed a code of some attractor then the
data on output (σ̂, T̂ , ô) and L̂ are the same as on input, while the sequence of words
ŵ is that one which define the map φ : K → K which defines solenoid. In any case ŵ
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ONE-DIMENSIONAL SOLENOID IN THE SENSE OF WILLIAMS 273

defines in the same way as w some integer matrix Ĝ and the corresponding vector ĝ.
We will need of them to check the condition of realizability.

Algorithm D.
Input. Formal (n,m)-code ⟨σ, T ,o;ϖ, Es, Eu,g,L⟩; integer N > 1.
Output. Formal (n,m)-code ⟨σ, T ,o;ϖ(N), Es(N), Eu(N),g(N),L(N)⟩
Comment. If the formal code on input is indeed a code of some attractor of f

then the code on output is the code of the same attractor considered as that one with
respect to N -th iteration of f .

This algorithm of checking realizability of solenoid as an attractor on surface is
based on the following criteria.

Theorem 3 ([3], Theorems 3.8.1, 3.8.2). The following conditions are necessary and
sufficient for the realizability of the formal code ⟨σ, t,o;ϖ, Es, Eu,g,L⟩.

(RC0) The number b0 calculated by algorithm A is zero and the formal configuration
(σ̂, T̂ , ô) calculated by algorithm B coincides with the initial one.

(RC0) The vector composed of the sum of rows of the matrix Ĝ calculated by Algorithm
B coincides with g.

(RC2) None of the words in the set {φ̂(ρ) : ρ ∈ R} is cyclically trivial. Here φ̂ is the
map ai 7→ ŵi.

(RC3) The matrix Ĝ is primitive.

(RC4) For minimal N ∈ N such that ϖ(N) = id, Es(N) = Eu(N) = + and for each
k ∈ 1,m the following conditions hold

(V
Tk−1+i
+ −V

Tk−1

+ )g(N) ̸= l
(N)
k + i for all i ∈ 1, t+k − 1

(V
Tm+k−1+i
− −V

Tm+k−1

− )g(N) ̸= l
(N)
k + i for all i ∈ 1, t−k − 1

Now we are ready to formulate the desired algorithm.

Main algorithm

Input. An abstract 1-solenoid defined by a branched manifold with m branch
points and n edges given by its solenoidal code ⟨σ, T ;w⟩. (The code must satisfy the
conditions (SC0–SC3)).

Move 0. By the sequence of words w define the permutation ϖ and the sequence of
signs E (Definition 4).

Move 1. Enumerate all admissible permutations of τ and for each (including the
identity) calculate the transformed code ⟨στ , T ;wτ ⟩.

Move 2. For each of them (we omit the index τ below) define a vector g by a
sequence of words w and write down all formal codes ⟨σ, t,o;ϖ, Es, Eu,g,L⟩ with
o = (+, . . . ,+), Eu = E , Es = Eu or Es = −Eu and L satisfying to the condition (FC3).
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Move 3. For each of these formal codes check the conditions of Theorem C and, if
they are not satisfied for any of them, to conclude that this solenoid is not realizable
on any oriented surface. Go to move 6.

Move 4. For each code that satisfies the conditions of Theorem C, check equality
ŵ = w, where ŵ is the sequence of words which is calculated for using Algorithm B
and w is that one from initial solenoidal code. If it is not satisfied for any of them,
make the same conclusion.

Move 5. If we find a code that satisfies all these conditions then the solenoid is
realizable on orientable surface. And calculating for these codes (using the Algorithm
A) a set of wordsR we define via corresponding co-representation of fundamental group
topological types of these surfaces. So we obtain minimal genus of such surface. What
is more, if Es = Eu then generating the attractor diffeomorphism preserves orientation
and it reverses it in the case Es = −Eu. The end of the procedure of the Algorithm.

Move 6. For each of transformed solenoidal codes calculated on the Move 1 write
down all formal codes with all sequences o with at least one entry ”−”, Eu = E , all
possible sequences Es and all sequences L satisfying to the condition (FC3).

Moves 7 and 8. For each of these codes check the same conditions as on the Moves
4 and 5. And if these are not valid for each of them than the solenoid is not realizable
on any surface.

Move 9. If we find a code that satisfies all these conditions then the solenoid is
realizable on non-orientable surface and we can define minimal genus of such one in
the same way as in orientable case using Algorithm A.
The end of the procedure of the Algorithm.
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