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Abstract. We study multi-parameter planar dynamical systems and carry out the global bifurcation
analysis of such systems. To control the global bifurcations of limit cycle in these systems, it is necessary
to know the properties and combine the effects of all their field rotation parameters. It can be done
by means of the development of our bifurcational geometric method based on the Wintner–Perko
termination principle and application of canonical systems with field rotation parameters. Using this
method, we solve, e. g., Hilbert’s Sixteenth Problem on the maximum number of limit cycles and their
distribution for the general Liénard polynomial system and a Holling-type quartic dynamical system.
We also conduct some numerical experiments to illustrate the obtained results.
Keywords: multi-parameter planar dynamical system, global bifurcation analysis, field rotation
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1. Introduction

We develop geometric aspects of bifurcation theory for studying multi-parameter
planar polynomial dynamical systems. It gives a global approach to the qualitative
analysis of such systems and helps to combine all other approaches, their methods and
results. First of all, the two-isocline method which was developed by N.P.Erugin is
used [4]. The isocline portrait is the most natural construction in the corresponding
polynomial equation. It is sufficient to have only two isoclines (of zero and infinity)
to obtain principal information on the original system, because these two isoclines are
the right-hand sides of the system. Geometric properties of isoclines (conics, cubics,
quartics, etc.) are well-known, and all isocline portraits can be easily constructed.
By means of them, all topologically different qualitative pictures of integral curves to
within a number of limit cycles and distinguishing center and focus can be obtained.
Thus it is possible to carry out a rough topological classification of the phase portraits
for the polynomial systems. It is the first application of Erugin’s method. After studying
contact and rotation properties of isoclines, the simplest (canonical) systems containing
limit cycles can be also constructed. Two groups of parameters can be distinguished
in such systems: static and dynamic. Static parameters determine the behavior of the
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phase trajectories in principle, since they control the number, position and character
of singular points in a finite part of the plane (finite singularities). Parameters from
the first group determine also a possible behavior of separatrices and singular points at
infinity (infinite singularities) under the variation of the parameters from the second
group. Dynamic parameters are rotation parameters. They do not change the number,
position and index of finite singularities and involve the vector field into directional
rotation. The rotation parameters allow to control infinite singularities, the behavior
of limit cycles and separatrices. The cyclicity of singular points and separatrix cycles,
the behavior of semi-stable and other multiple limit cycles are controlled by these
parameters as well. Therefore, by means of the rotation parameters, it is possible to
control all limit cycle bifurcations and to solve the most complicated problems of the
qualitative theory of polynomial systems [4].

To control all of the limit cycle bifurcations (especially, bifurcations of multiple
limit cycles), it is necessary to know the properties and combine the effects of all of the
rotation parameters. It can be done by means of the development of new methods based
on the well-known Weierstrass preparation theorem and the Perko planar termination
principle stating that the maximal one-parameter family of multiple limit cycles
terminates either at a singular point, which is typically of the same multiplicity, or
on a separatrix cycle, which is also typically of the same multiplicity [4, 14]. This
principle is a consequence of the principle of natural termination which was stated
for higher-dimensional dynamical systems by A.Wintner, who studied one-parameter
families of periodic orbits of the restricted three-body problem and used Puiseux series
to show that in the analytic case any one-parameter family of periodic orbits can be
uniquely continued through any bifurcation except a period-doubling bifurcation. Such
a bifurcation can happen, for example, in a Lorenz system. Besides, the periods in a
one-parameter family of a higher-dimensional system can become unbounded in strange
ways: for example, the periodic orbits may belong to a strange invariant set, strange
attractor, generated at a bifurcation value for which there is a homoclinic tangency of
the stable and unstable manifolds of the Poincaré map. This cannot happen for planar
systems. That is why the Wintner–Perko termination principle is applied for studying
multiple limit cycle bifurcations of the multi-parameter planar polynomial dynamical
systems [4, 14].

We have already presented a solution of Hilbert’s Sixteenth Problem in the
quadratic case of polynomial systems proving that for quadratic systems four is really
the maximum number of limit cycles and (3 : 1) is their only possible distribution.
The proof is carried out by contradiction applying catastrophe theory. On the first
step, the non-existence of four limit cycles surrounding a singular point is proved.
A canonical system containing three field-rotation parameters is considered and it is
supposed that this system has four limit cycles around the origin. Thus we get into some
three-dimensional domain of the field rotation parameters being restricted by some
conditions on the rest two parameters corresponding to definite cases of singular points
in the phase plane. This three-parameter domain of four limit cycles is bounded by three
fold bifurcation surfaces forming a swallow-tail bifurcation surface of multiplicity-four
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limit cycles. Since the corresponding maximal one-parameter family of multiplicity-four
limit cycles generated by a field rotation is monotonic, it is proved that it cannot be
cyclic and terminates either at the origin or on some separatrix cycle surrounding the
origin. Besides, we know absolutely precisely the cyclicity of the singular point which is
equal to three and therefore we have got a contradiction with the termination principle
stating that the multiplicity of limit cycles cannot be higher than the multiplicity
(cyclicity) of the singular point in which they terminate. Since we know the concrete
properties of all three field rotation parameters in the canonical system and can control
simultaneously bifurcations of limit cycles around different singular points, we are able
to complete the proof of the theorem [4]. The same result can be obtained by purely
geometric methods as well [6].

We have also established some preliminary results on generalizing our ideas and
methods to special planar cubic, quartic and other polynomial dynamical systems.
In [5], we have constructed a canonical cubic dynamical system of Kukles type and
have carried out the global qualitative analysis of its special case corresponding to
a generalized Liénard equation. In [11, 12], using the Wintner–Perko termination
principle of multiple limit cycles and our bifurcational geometric approach, we have
solved the problem on the maximum number and distribution of limit cycles in the
general Kukles cubic-linear system. In [2], we have established the global qualitative
analysis of centrally symmetric cubic systems which are used as learning models of
planar neural networks. In [3], we have carried out the global bifurcation analysis
of a quartic dynamical system which models the dynamics of the populations of
predators and their prey in a given ecological system. We have also completed the
study of multiple limit cycle bifurcations in the well-known FitzHugh–Nagumo neuronal
model [7]. Besides, we have presented a solution of Smale’s Thirteenth Problem [15]
proving that the Liénard system with a polynomial of degree 2k + 1 can have at most
k limit cycles [8]. Generalizing the obtained results, we have presented a solution
of Hilbert’s Sixteenth Problem on the maximum number of limit cycles surrounding
a singular point for an arbitrary polynomial system [8].

In Section 2 of this paper, applying a canonical system with field rotation
parameters and using geometric properties of the spirals filling the interior and exterior
domains of limit cycles, we solve the limit cycle problem for the general Liénard
polynomial system with an arbitrary (but finite) number of singular points generalizing
our previous results which we obtained in [9, 10] under some assumptions on the
parameters of the Liénard system. In Section 3, we complete the global bifurcation
analysis of a quartic dynamical system corresponding to a new class of rational Holling-
type systems which model the dynamics of the populations of predators and their prey
in a given ecological or biomedical system. We also conduct some numerical experiments
to illustrate the results obtained in this paper [16].
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2. The General Liénard Polynomial System

In this Section, by means of our bifurcational geometric approach [2]–[10], we
consider the general Liénard polynomial system:

ẋ = y, ẏ = −x (1 + a1 x+ . . .+ a2l x
2l) + y (α0 + α1 x+ . . .+ α2k x

2k). (2.1)

Suppose that a21 + . . .+ a22l ̸= 0 in system (2.1). The finite singularities of (2.1) are
determined by the algebraic system

x (1 + a1 x+ . . .+ a2l x
2l) = 0, y = 0. (2.2)

This system always has an anti-saddle at the origin and, in general, can have at most
2l + 1 finite singularities which lie on the x-axis and are distributed so that a saddle
(or saddle-node) is followed by a node or a focus, or a center and vice versa [1]. For
studying the infinite singularities, the methods applied in [1] for Rayleigh’s and van
der Pol’s equations and also Erugin’s two-isocline method developed in [4] can be used.

Following [4], we will study limit cycle bifurcations of (2.1) by means of canonical
systems containing field rotation parameters of (2.1) [1, 4].

Theorem 2.1. The Liénard polynomial system (2.1) with limit cycles can be reduced
to one of the canonical forms:

ẋ = y,

ẏ = −x (1 + a1x+ . . .+ a2lx
2l)

+ y(α0−β1−. . .−β2k−1+β1x+α2x
2+. . .+β2k−1x

2k−1+α2kx
2k)

(2.3)

or
ẋ = y ≡ P (x, y),

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(α0−β1−. . .−β2k−1+β1x+α2x
2+. . .+β2k−1x

2k−1+α2kx
2k) ≡ Q(x, y),

(2.4)

where 1 + a1x + . . . + a2lx
2l ̸= 0, α0, α2, . . . , α2k are field rotation parameters and

β1, β3, . . . , β2k−1 are semi-rotation parameters.

Proof. Let us compare system (2.1) with (2.3) and (2.4). It is easy to see that system
(2.3) has the only finite singular point: an anti-saddle at the origin. System (2.4) has
at list two singular points including an anti-saddle at the origin and a saddle which,
without loss of generality, can be always putted into the point (1, 0). Instead of the
odd parameters α1, α3, . . . , α2k−1 in system (2.1), also without loss of generality, we
have introduced new parameters β1, β3, . . . , β2k−1 into (2.3) and (2.4).

We will study now system (2.4) (system (2.3) can be studied absolutely similarly).
Let all of the parameters α0, α2, . . . , α2k and β1, β3, . . . , β2k−1 vanish in this system,

ẋ = y, ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1), (2.5)
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and consider the corresponding equation

dy

dx
=
x(x− 1)(1 + b1x+ . . .+ b2l−1x

2l−1)

y
≡ F (x, y). (2.6)

Since F (x,−y) = −F (x, y), the direction field of (2.6) (and the vector field of (2.5)
as well) is symmetric with respect to the x-axis. It follows that for arbitrary values of
the parameters b1, . . . , b2l−1 system (2.5) has centers as anti-saddles and cannot have
limit cycles surrounding these points. Therefore, we can fix the parameters b1, . . . , b2l−1

in system (2.4), fixing the position of its finite singularities on the x-axis.
To prove that the even parameters α0, α2, . . . , α2k rotate the vector field of (2.4),

let us calculate the following determinants:

∆α0 = P Q′
α0

−QP ′
α0

= y2 ≥ 0,

∆α2 = P Q′
α2

−QP ′
α2

= x2y2 ≥ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆α2k
= P Q′

α2k
−QP ′

α2k
= x2ky2 ≥ 0.

By definition of a field rotation parameter [1, 4, 14], for increasing each of the
parameters α0, α2, . . . , α2k, under the fixed others, the vector field of system (2.4)
is rotated in the positive direction (counterclockwise) in the whole phase plane; and,
conversely, for decreasing each of these parameters, the vector field of (2.4) is rotated
in the negative direction (clockwise).

Calculating the corresponding determinants for the parameters β1, β3, . . . , β2k−1,
we can see that

∆β1 = P Q′
β1

−QP ′
β1

= (x− 1) y2,

∆β3 = P Q′
β3

−QP ′
β3

= (x3 − 1) y2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆β2k−1
= P Q′

β2k−1
−QP ′

β2k−1
= (x2k−1− 1) y2.

It follows [1, 4] that, for increasing each of the parameters β1, β3, . . . , β2k−1, under
the fixed others, the vector field of system (2.4) is rotated in the positive direction
(counterclockwise) in the half-plane x > 1 and in the negative direction (clockwise)
in the half-plane x < 1 and vice versa for decreasing each of these parameters. We will
call these parameters as semi-rotation ones.

Thus, for studying limit cycle bifurcations of (2.1), it is sufficient to consider the
canonical systems (2.3) and (2.4) containing the field rotation parameters α0, α2, . . . ,
α2k and the semi-rotation parameters β1, β3, . . . , β2k−1. The theorem is proved. �

By means of the canonical systems (2.3) and (2.4), we will prove the following
theorem.
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Theorem 2.2. The Liénard polynomial system (2.1) can have at most k + l + 1 limit
cycles, k+1 surrounding the origin and l surrounding one by one the other singularities
of (2.1).

Proof. According to Theorem 2.1, for the study of limit cycle bifurcations of
system (2.1), it is sufficient to consider the canonical systems (2.3) and (2.4) containing
the field rotation parameters α0, α2, . . . , α2k and the semi-rotation parameters
β1, β3, . . . , β2k−1. We will work with (2.4) again (system (2.3) can be considered in
a similar way).

Vanishing all of the parameters α0, α2, . . . , α2k and β1, β3, . . . , β2k−1 in (2.4), we
will have system (2.5) which is symmetric with respect to the x-axis and has centers
as anti-saddles. Its center domains are bounded by either separatrix loops or digons of
the saddles or saddle-nodes of (2.5) lying on the x-axis.

Let us input successively the semi-rotation parameters β1, β3, . . . , β2k−1 into
system (2.5) beginning with the parameters at the highest degrees of x and alternating
with their signs. So, begin with the parameter β2k−1 and let, for definiteness, β2k−1 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−1 + β2k−1x
2k−1).

(2.7)

In this case, the vector field of (2.7) is rotated in the negative direction (clockwise)
in the half-plane x < 1 turning the center at the origin into a rough stable focus. All
of the other centers lying in the half-plane x > 1 become rough unstable foci, since
the vector field of (2.7) is rotated in the positive direction (counterclockwise) in this
half-plane [1, 4].

Fix β2k−1 and input the parameter β2k−3 < 0 into (2.7):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−3 − β2k−1 + β2k−3x
2k−3 + β2k−1x

2k−1).

(2.8)

Then the vector field of (2.8) is rotated in the opposite directions in each of the half-
planes x < 1 and x > 1. Under decreasing β2k−3, when β2k−3 = −β2k−1, the focus at the
origin becomes nonrough (weak), changes the character of its stability and generates a
stable limit cycle. All of the other foci in the half-plane x > 1 will also generate unstable
limit cycles for some values of β2k−3 after changing the character of their stability. Under
further decreasing β2k−3, all of the limit cycles will expand disappearing on separatrix
cycles of (2.8) [1, 4].

Denote the limit cycle surrounding the origin by Γ0, the domain outside the cycle
by D01, the domain inside the cycle by D02 and consider logical possibilities of
the appearance of other (semi-stable) limit cycles from a “trajectory concentration”
surrounding this singular point. It is clear that, under decreasing the parameter β2k−3,
a semi-stable limit cycle cannot appear in the domain D02, since the focus spirals filling
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this domain will untwist and the distance between their coils will increase because of
the vector field rotation [4].

By contradiction, we can also prove that a semi-stable limit cycle cannot appear in
the domain D01. Suppose it appears in this domain for some values of the parameters
β∗
2k−1 > 0 and β∗

2k−3 < 0. Return to system (2.5) and change the inputting order for
the semi-rotation parameters. Input first the parameter β2k−3 < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−3 + β2k−3x
2k−3).

(2.9)

Fix it under β2k−3 = β∗
2k−3. The vector field of (2.9) is rotated counterclockwise and

the origin turns into a rough unstable focus. Inputting the parameter β2k−1 > 0 into
(2.9), we get again system (2.8) the vector field of which is rotated clockwise. Under
this rotation, a stable limit cycle Γ0 will appear from a separatrix cycle for some value
of β2k−1. This cycle will contract, the outside spirals winding onto the cycle will untwist
and the distance between their coils will increase under increasing β2k−1 to the value
β∗
2k−1. It follows that there are no values of β∗

2k−3 < 0 and β∗
2k−1 > 0 for which a

semi-stable limit cycle could appear in the domain D01.
This contradiction proves the uniqueness of a limit cycle surrounding the origin

in system (2.8) for any values of the parameters β2k−3 and β2k−1 of different signs.
Obviously, if these parameters have the same sign, system (2.8) has no limit cycles
surrounding the origin at all. On the same reason, this system cannot have more than
l limit cycles surrounding the other singularities (foci or nodes) of (2.8) one by one.

It is clear that inputting the other semi-rotation parameters β2k−5, . . . , β1 into
system (2.8) will not give us more limit cycles, since all of these parameters are rough
with respect to the origin and the other anti-saddles lying in the half-plane x > 1.
Therefore, the maximum number of limit cycles for the system

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β1 − . . .− β2k−3 − β2k−1 + β1x+ . . .+ β2k−3x
2k−3 + β2k−1x

2k−1)

(2.10)

is equal to l + 1 and they surround the anti-saddles (foci or nodes) of (2.10) one by
one.

Suppose that β1+ . . .+β2k−3+β2k−1 > 0 and input the last rough parameter α0 > 0
into system (2.10):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(α0 − β1 − . . .− β2k−1 + β1x+ . . .+ β2k−1x
2k−1).

(2.11)

This parameter rotating the vector field of (2.11) counterclockwise in the whole phase
plane also will not give us more limit cycles, but under increasing α0, when α0 =
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β1 + . . . + β2k−1, we can make the focus at the origin nonrough (weak), after the
disappearance of the limit cycle Γ0 in it. Fix this value of the parameter α0 (α0 = α∗

0) :

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1).

(2.12)

Let us input now successively the other field rotation parameters α2, . . . , α2k into
system (2.12) beginning again with the parameters at the highest degrees of x and
alternating with their signs. So, begin with the parameter α2k and let α2k < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2kx

2k).

(2.13)

In this case, the vector field of (2.13) is rotated clockwise in the whole phase plane
and the focus at the origin changes the character of its stability generating again a
stable limit cycle. The limit cycles surrounding the other singularities of (2.13) can
also still exist. Denote the limit cycle surrounding the origin by Γ1, the domain outside
the cycle by D1 and the domain inside the cycle by D2. The uniqueness of a limit cycle
surrounding the origin (and limit cycles surrounding the other singularities) for system
(2.13) can be proved by contradiction like we have done above for (2.8).

Let system (2.13) have the unique limit cycle Γ1 surrounding the origin and l limit
cycles surrounding the other antisaddles of (2.13). Fix the parameter α2k < 0 and input
the parameter α2k−2 > 0 into (2.13):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−2x

2k−2 + α2kx
2k).

(2.14)

Then the vector field of (2.14) is rotated in the opposite direction (counterclockwise)
and the focus at the origin immediately changes the character of its stability (since
its degree of nonroughness decreases and the sign of the field rotation parameter at
the lower degree of x changes) generating the second (unstable) limit cycle Γ2. The
limit cycles surrounding the other singularities of (2.14) can only disappear in the
corresponding foci (because of their roughness) under increasing the parameter α2k−2.
Under further increasing α2k−2, the limit cycle Γ2 will join with Γ1 forming a semi-stable
limit cycle, Γ12, which will disappear in a “trajectory concentration” surrounding the
origin. Can another semi-stable limit cycle appear around the origin in addition to Γ12?
It is clear that such a limit cycle cannot appear either in the domain D1 bounded on
the inside by the cycle Γ1 or in the domain D3 bounded by the origin and Γ2 because of
the increasing distance between the spiral coils filling these domains under increasing
the parameter.

To prove the impossibility of the appearance of a semi-stable limit cycle in the
domainD2 bounded by the cycles Γ1 and Γ2 (before their joining), suppose the contrary,
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i. e., that for some values of these parameters, α∗
2k < 0 and α∗

2k−2 > 0, such a semi-stable
cycle exists. Return to system (2.12) again and input first the parameter α2k−2 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−2x

2k−2).

(2.15)

This parameter rotates the vector field of (2.15) counterclockwise preserving the origin
as a nonrough stable focus.

Fix this parameter under α2k−2 = α∗
2k−2 and input the parameter α2k < 0 into (2.15)

getting again system (2.14). Since, by our assumption, this system has two limit cycles
surrounding the origin for α2k > α∗

2k, there exists some value of the parameter, α12
2k

(α12
2k < α∗

2k < 0), for which a semi-stable limit cycle, Γ12, appears in system (2.14) and
then splits into a stable cycle Γ1 and an unstable cycle Γ2 under further decreasing α2k.
The formed domain D2 bounded by the limit cycles Γ1, Γ2 and filled by the spirals will
enlarge since, on the properties of a field rotation parameter, the interior unstable limit
cycle Γ2 will contract and the exterior stable limit cycle Γ1 will expand under decreasing
α2k. The distance between the spirals of the domain D2 will naturally increase, which
will prevent the appearance of a semi-stable limit cycle in this domain for α2k < α12

2k.
Thus, there are no such values of the parameters, α∗

2k < 0 and α∗
2k−2 > 0, for

which system (2.14) would have an additional semi-stable limit cycle surrounding the
origin. Obviously, there are no other values of the parameters α2k and α2k−2 for which
system (2.14) would have more than two limit cycles surrounding this singular point.
On the same reason, additional semi-stable limit cycles cannot appear around the other
singularities (foci or nodes) of (2.14). Therefore, l+2 is the maximum number of limit
cycles in system (2.14).

Suppose that system (2.14) has two limit cycles, Γ1 and Γ2, surrounding the origin
and l limit cycles surrounding the other antisaddles of (2.14) (this is always possible if
−α2k ≫ α2k−2 > 0). Fix the parameters α2k, α2k−2 and consider a more general system
inputting the third parameter, α2k−4 < 0, into (2.14):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4 + α2k−2x
2k−2 + α2kx

2k).

(2.16)

For decreasing α2k−4, the vector field of (2.16) will be rotated clockwise and the focus
at the origin will immediately change the character of its stability generating a third
(stable) limit cycle, Γ3. With further decreasing α2k−4, Γ3 will join with Γ2 forming
a semi-stable limit cycle, Γ23, which will disappear in a “trajectory concentration”
surrounding the origin; the cycle Γ1 will expand disappearing on a separatrix cycle
of (2.16).

Let system (2.16) have three limit cycles surrounding the origin: Γ1, Γ2, Γ3. Could
an additional semi-stable limit cycle appear with decreasing α2k−4 after splitting of
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which system (2.16) would have five limit cycles around the origin? It is clear that such
a limit cycle cannot appear either in the domain D2 bounded by the cycles Γ1 and Γ2

or in the domain D4 bounded by the origin and Γ3 because of the increasing distance
between the spiral coils filling these domains after decreasing α2k−4. Consider two other
domains: D1 bounded on the inside by the cycle Γ1 and D3 bounded by the cycles Γ2

and Γ3. As before, we will prove the impossibility of the appearance of a semi-stable
limit cycle in these domains by contradiction.

Suppose that for some set of values of the parameters α∗
2k < 0, α∗

2k−2 > 0 and
α∗
2k−4<0 such a semi-stable cycle exists. Return to system (2.12) again inputting first

the parameters α2k−2 > 0 and α2k−4 < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4 + α2kx
2k).

(2.17)

Fix the parameter α2k−2 under the value α∗
2k−2. With decreasing α2k−4, a separatrix

cycle formed around the origin will generate a stable limit cycle Γ1. Fix α2k−4 under
the value α∗

2k−4 and input the parameter α2k > 0 into (2.17) getting system (2.16).
Since, by our assumption, (2.16) has three limit cycles for α2k > α∗

2k, there exists
some value of the parameter α23

2k (α23
2k < α∗

2k < 0) for which a semi-stable limit cycle,
Γ23, appears in this system and then splits into an unstable cycle Γ2 and a stable cycle
Γ3 with further decreasing α2k. The formed domain D3 bounded by the limit cycles Γ2,
Γ3 and also the domain D1 bounded on the inside by the limit cycle Γ1 will enlarge and
the spirals filling these domains will untwist excluding a possibility of the appearance
of a semi-stable limit cycle there.

All other combinations of the parameters α2k, α2k−2, and α2k−4 are considered in a
similar way. It follows that system (2.16) can have at most l + 3 limit cycles.

If we continue the procedure of successive inputting the field rotation parameters,
α2k, . . . , α2, into system (2.12),

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2x

2 + . . .+ α2kx
2k),

(2.18)

it is possible to obtain k limit cycles surrounding the origin and l surrounding one by
one the other singularities (foci or nodes) (−α2k ≫ α2k−2 ≫ −α2k−4 ≫ α2k−6 ≫ . . .).

Then, by means of the parameter α0 ̸= β1 + . . . + β2k−1 (α0 > α∗
0, if α2 < 0,

and α0 < α∗
0, if α2 > 0), we will have the canonical system (2.4) with an additional

limit cycle surrounding the origin and can conclude that this system (i. e., the Liénard
polynomial system (2.1) as well) has at most k+l+1 limit cycles, k+1 surrounding the
origin and l surrounding one by one the antisaddles (foci or nodes) of (2.4) (and (2.1)
as well). The theorem is proved. �
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3. A Holling-Type Quartic Dynamical System

In this Section, we study a Holling-type rational system which models the dynamics
of the populations of predators and their prey in a given ecological or biomedical system:

ẋ = x

(
1− λx− xy

αx2 + βx+ 1

)
(prey),

ẏ = −y
(
δ + µy − x2

αx2 + βx+ 1

)
(predator),

(3.1)

where x > 0 and y > 0; α ≥ 0, β > −2
√
α, δ > 0, λ > 0, and µ ≥ 0 are parameters.

Dividing the second equation of (3.1) by the first one (left and right hand sides,
respectively), after algebraic transformations in the corresponding equation, we can
rewrite rational system (3.1) in the form of a quartic dynamical system

ẋ = x((1− λx)(αx2 + βx+ 1)− xy) ≡ P,

ẏ = −y((δ + µy)(αx2 + βx+ 1)− x2) ≡ Q.
(3.2)

Together with (3.2), we will also consider an auxiliary system; see [1, 4, 14]

ẋ = P − γQ, ẏ = Q+ γP, (3.3)

applying to these systems our bifurcational geometric approach [2]–[10] and completing
the qualitative analysis of (3.1).

Consider first a general polynomial system in the vector form

ẋ = f(x,µ), (3.4)

where x ∈ R2; µ ∈ Rn; f ∈ R2 (f is a polynomial vector function).
Let us formulate the Wintner–Perko termination principle [4, 14] for this system.

Theorem 3.1. Any one-parameter family of multiplicity-m limit cycles of relatively
prime polynomial system (3.4) can be extended in a unique way to a maximal one-
parameter family of multiplicity-m limit cycles of (3.4) which is either open or cyclic.

If it is open, then it terminates either as the parameter or the limit cycles become
unbounded; or, the family terminates either at a singular point of (3.4), which is
typically a fine focus of multiplicity m, or on a (compound) separatrix cycle of (3.4)
which is also typically of multiplicity m.

The proof of this principle for general polynomial system (3.4) with a vector
parameter µ ∈ Rn parallels the proof of the planar termination principle for the system

ẋ = P (x, y, λ), ẏ = Q(x, y, λ) (3.5)

with a single parameter λ ∈ R [4, 14], since there is no loss of generality in assuming
that system (3.4) is parameterized by a single parameter λ; i. e., we can assume that
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there exists an analytic mapping µ(λ) of R into Rn such that (3.4) can be written as
(3.5) and then we can repeat everything, what had been done for system (3.5) in [14].
In particular, if λ is a field rotation parameter of (3.5), the following Perko’s theorem
on monotonic families of limit cycles is valid [4, 14].

Theorem 3.2. If L0 is a nonsingular multiple limit cycle of (3.5) for λ = λ0, then L0

belongs to a one-parameter family of limit cycles of (3.5); furthermore:
1) if the multiplicity of L0 is odd, then the family either expands or contracts mo-

notonically as λ increases through λ0;
2) if the multiplicity of L0 is even, then L0 bifurcates into a stable and an unstable

limit cycle as λ varies from λ0 in one sense and L0 disappears as λ varies from λ0 in
the opposite sense; i. e., there is a fold bifurcation at λ0.

Consider again system (3.2). This system has two invariant straight lines: x = 0
and y = 0. Its finite singularities are determined by the algebraic system

x((1− λx)(αx2 + βx+ 1)− xy) = 0,

y((δ + µy)(αx2 + βx+ 1)− x2) = 0.
(3.6)

From (3.6), we have got: two singular points (0, 0) and (0,−δ/µ), at most two points
defined by the condition

αx2 + βx+ 1 = 0, y = 0, (3.7)

and at most six singularities defined by the system

xy = (1− λx)(αx2 + βx+ 1),

y (δ + µy) = x (1− λx),
(3.8)

among which we always have the point (1/λ, 0). See [13] for more details.
The point (0, 0) is always a saddle, but (1/λ, 0) can be a node or a saddle, or a

saddle-node. The point (1/λ, 0) can change multiplicity when singular points enter or
exit the first quadrant. In addition, a singular point of multiplicity 2 may appear in the
first quadrant and bifurcate into two singular points. In the case β ≥ 0 (respectively,
−2

√
α < β < 0), there is a possibility of up to one singular point (respectively, two

singular points) in the open first quadrant [13]. If there exists exactly one simple
singular point in the open first quadrant, then it is an anti-saddle. If there exists
exactly two simple singular points in the open first quadrant, then the singular point
on the left with respect to the x-axis is an anti-saddle and the singular point on the
right is a saddle [13]. If a singular point is not in the first quadrant, in consequence, it
has no biological significance.

To study singular points of (3.2) at infinity, consider the corresponding differential
equation

dy

dx
= − y((δ + µy)(αx2 + βx+ 1)− x2)

x((1− λx)(αx2 + βx+ 1)− xy)
. (3.9)
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Dividing the numerator and denominator of the right-hand side of (3.9) by x4

(x ̸= 0) and denoting y/x by u (as well as dy/dx), we will get the algebraic equation

u((µ/λ)u− 1) = 0, where u = y/x, (3.10)

for all infinite singularities of (3.9) except when x = 0 (the “ends” of the y-axis) [1, 4].
For this special case we can divide the numerator and denominator of the right-hand
side of (3.9) by y4 (y ̸= 0) denoting x/y by v (as well as dx/dy) and consider the
algebraic equation

v3(v − µ/λ) = 0, where v = x/y. (3.11)

The equations (3.10) and (3.11) give three singular points at infinity for (3.9): a simple
node on the “ends” of the x-axis, a triple node on the “ends” of the y-axis, and a simple
saddle in the direction of y/x = λ/µ.

To investigate the character and distribution of the singular points in the phase
plane, we have used a method developed in [3]. The sense of this method is to obtain
the simplest (well-known) system by vanishing some parameters (usually field rotation
parameters) of the original system and then to input these parameters successively one
by one studying the dynamics of the singular points (both finite and infinite) in the
phase plane.

Using the obtained information on singular points and applying our bifurcational
geometric approach [2]–[10], we can study the limit cycle bifurcations of system (3.2).
This study will use some results obtained in [13]: in particular, the results on the
cyclicity of a singular point of (3.2). However, it is surely not enough to have only these
results to prove the main theorem of this paper concerning the maximum number of
limit cycles of system (3.2).

Finally, we will see also that the main result of this paper is quite similar to the
main result of [3], where a Holling system of type IV was studied, but the number
of singular points in the first quadrant and the distribution of limit cycles in the two
systems are different.

Applying the definition of a field rotation parameter [1, 4, 14], i. e., a parameter
which rotates the field in one direction, to system (3.2), let us calculate now the
corresponding determinants for the parameters α and β, respectively:

∆α = PQ′
α −QP ′

α = x4y(y(δ + µy)− x(1− λx)), (3.12)

∆β = PQ′
β −QP ′

β = x4y(y(δ + µy)− x(1− λx)). (3.13)

It follows from (3.12) and (3.13) that on increasing α or β the vector field of (3.2) in
the first quadrant is rotated in the positive direction (counterclockwise) only on the
outside of the ellipse

y(δ + µy)− x(1− λx) = 0. (3.14)

Therefore, to study limit cycle bifurcations of system (3.2), it makes sense together
with (3.2) to consider also an auxiliary system (3.3) with a field rotation parameter γ :

∆γ = P 2 +Q2 ≥ 0. (3.15)
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Using system (3.3) and applying Perko’s results [4, 14], we prove the following
theorem.

Theorem 3.3. System (3.2) can have at most two limit cycles surrounding one singular
point.

Proof. First let us prove that system (3.2) can have at least two limit cycles. Begin with
system (3.2), where α = β = 0. It is clear that such a cubic system, with two invariant
straight lines, cannot have limit cycles at all [13]. Inputting a negative parameter β into
this system, the vector field of (3.2) will be rotated in the negative direction (clockwise)
at infinity, the structure and the character of stability of infinite singularities will be
changed, and an unstable limit, Γ1, will appear immediately from infinity in this case.
This cycle will surround a stable anti-saddle (a node or a focus) A which is in the first
quadrant of system (3.2). Inputting a positive parameter α, the vector field of quartic
system (1.10) will be rotated in the positive direction (counterclockwise) at infinity,
the structure and the character of stability of infinite singularities will be changed
again, and a stable limit, Γ2, surrounding Γ1 will appear immediately from infinity in
this case. On further increasing the parameter α, the limit cycles Γ1 and Γ2 combine
a semi-stable limit, Γ12, which then disappears in a “trajectory concentration” [1, 4].
Thus, we have proved that system (3.2) can have at least two limit cycles; see also [13].

Let us prove now that this system has at most two limit cycles. The proof is carried
out by contradiction applying catastrophe theory [4, 14]. Consider system (3.3) with
three parameters: α, β, and γ (the parameters δ, λ, and µ can be fixed, since they do
not generate limit cycles). Suppose that (3.3) has three limit cycles surrounding the
only point A in the first quadrant. Then we get into some domain of the parameters
α, β, and γ being restricted by definite conditions on three other parameters δ, λ, and
µ. This domain is bounded by two fold bifurcation surfaces forming a cusp bifurcation
surface of multiplicity-three limit cycles in the space of the parameters α, β, and γ.

The corresponding maximal one-parameter family of multiplicity-three limit cycles
cannot be cyclic, otherwise there will be at least one point corresponding to the limit
cycle of multiplicity four (or even higher) in the parameter space.

Extending the bifurcation curve of multiplicity-four limit cycles through this point
and parameterizing the corresponding maximal one-parameter family of multiplicity-
four limit cycles by the field rotation parameter γ, according to Theorem 3.2, we will
obtain two monotonic curves of multiplicity-three and one, respectively, which, by the
Wintner–Perko termination principle (Theorem 3.1), terminate either at the point A
or on a separatrix cycle surrounding this point.

Since we know at least the cyclicity of the singular point which is equal to two [13],
we have got a contradiction with the termination principle stating that the multiplicity
of limit cycles cannot be higher than the multiplicity (cyclicity) of the singular point
in which they terminate.

If the maximal one-parameter family of multiplicity-three limit cycles is not cyclic,
using the same principle (Theorem 3.1), this again contradicts the cyclicity of A [13]
not admitting the multiplicity of limit cycles to be higher than two. This contradiction
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completes the proof in the case of one singular point in the first quadrant.
Suppose that system (3.3) with two finite singularities, a saddle S and an anti-

saddle A, has three limit cycles surrounding A. Then we get again into some domain
of the parameters α, β, and γ bounded by two fold bifurcation surfaces forming a cusp
bifurcation surface of multiplicity-three limit cycles in the space of the parameters α,
β, and γ being restricted by definite conditions on three other parameters δ, λ, and µ.

The corresponding maximal one-parameter family of multiplicity-three limit cycles
cannot be cyclic, otherwise there will be at least one point corresponding to the limit
cycle of multiplicity four (or even higher) in the parameter space. Extending the
bifurcation curve of multiplicity-four limit cycles through this point and parameterizing
the corresponding maximal one-parameter family of multiplicity-four limit cycles by
the field rotation parameter γ, according to Theorem 3.2, we will obtain again two
monotonic curves of multiplicity-three and one, respectively, which, by Theorem 3.1,
terminate either at the point A or on a separatrix loop surrounding this point [4].

Since we know at least the cyclicity of the singular point which is equal to two [13],
we have got a contradiction with the termination principle (Theorem 3.1).

If the maximal one-parameter family of multiplicity-three limit cycles is not cyclic,
using the same principle, this again contradicts the cyclicity of A [13] not admitting
the multiplicity of limit cycles higher than two. Moreover, it also follows from the
termination principle that a separatrix loop cannot have the multiplicity (cyclicity)
higher than two in this case.

Thus, we conclude that system (3.2) cannot have either a multiplicity-three limit
cycle or more than two limit cycles surrounding a singular point which proves the
theorem. �
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