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Topological conjugacy of gradient-like flows
on surfaces1

V. Kruglov
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Abstract. The class of C1-smooth gradient-like flows (Morse flows) on closed surface is the subclass
of the Morse-Smale flows class, which are rough. Their non-wandering set consists of a finite number
of hyperbolic fixed points and a finite number of hyperbolic limit cycles, and they does not have
trajectories connecting saddle points. It is well known that the topological equivalence class of a Morse-
Smale flow on a surface can be described combinatorially, for example, by the directed Peixoto graph,
or by the Oshemkov-Sharko molecule. However, the description of the class of the topological conjugacy
of such a system already requires the introduction of continuous invariants (moduli), corresponding
to the periods of limit cycles at least. Thus, one class of the equivalence contains continuum classes
of the topological conjugacy. Gradient-like flows are Morse-Smale flows without limit cycles. In this
paper we prove that gradient-like flows on a closed surface are topologically conjugate iff they are
topologically equivalent.
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1. Introduction and formulation of results

In 1937 A. Andronov and L. Pontryagin published the classical paper [1], in which
they considered a system of differential equations

ẋ = v(x), (1.1)

where v(x) is a C1-vector field given on a disc bounded by a curve without a contact in
the plane and found a roughness criterion for the system (1.1). They established that
on the plane the rough system is exactly system whose non-wandering set consists of
finite number of hyperbolic fixed points and hyperbolic limit cycles and which does
not have trajectories connecting saddle points. Such systems were called Morse-Smale
systems when in 1967 S. Smale generalised such systems to multidimensional case in [8].
If a Morse-Smale system does not have limit cycles, then it is called as Morse system
or gradient-like system.

The present paper is devoted to the classification of Morse flows on a closed
surfaces S.

1The author was partially supported by Russian Science Foundation (project 17-11-01041), except
the local conjugation which was an output of the research project “Topology and Chaos in Dynamics
of Systems, Foliations and Deformation of Lie Algebras (2018)” which is a part of the Basic Research
Program at the National Research University Higher School of Economics (HSE).
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Let us recall that two flows f t and f ′t on surface S are called topologically equivalent
if there exists a homeomorphism h : S → S mapping trajectories of one flow into
trajectories of another preserving directions of moving. Flows f t and f ′t on surface S
are called topologically conjugate if there exists a homeomorphism h : S → S such that
h ◦ f t = f ′t ◦ h for every real t.

It is well known that the topological equivalence class of the Morse-Smale flow on
surface can be described combinatorially, for example, by the directed Peixoto graph,
or by the Oshemkov-Sharko molecule. In more details.

The directed Peixoto graph introduced by him in 1971 in [6] for arbitrary Morse-
Smale flow on a closed surface, is the generalisation of the Leontovich-Mayer scheme,
introduced in [2] (1937) and [3] (1955) for flows on the plane (but not only Morse-
Smale). Their approach is based on the ideas of Poincaré-Bendixon to pick a set
of specially chosen trajectories so that their relative position fully determines the
qualitative decomposition of the phase space of the flow into the trajectories. The
Peixoto graph’s vertices bijectively correspond to fixed points and limit cycles of the
flow, its edges correspond to the connected components of the invariant manifolds of
fixed points and closed trajectories without the points and the trajectories itself (see
Fig. 1). To be a complete topological invariant such graphs contain the specially chosen
subgraphs as well.
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Fig. 1. An example of a gradient-like flow on a sphere S2, its Peixoto’s directed graph and its
Oshemkov-Sharko’s three-colour graph

However, in 1998 Oshemkov and Sharko in [4] found that the Peixoto’s graph is
not complete for all Morse-Smale flows, especially it does not always distinguish the
difference between two types of decompositions into trajectories for a domain bounded
by two limit cycles of the flow. For Morse flows they introduced the new complete
invariant – three-colour graph, its vertices correspond to the so-called triangular
domains, restricted by two saddle separatrices and one usual trajectory which are

ISSN 0203–3755 Динамические системы, 2018, том 8(36), №1



TOPOLOGICAL CONJUGACY OF GRADIENT-LIKE FLOWS 17

called sides, and these sides correspond to coloured edges of the graph, side of each
type corresponds to the edge of the certain colour. Then Oshemkov and Sharko in the
same work took three-colour graphs and elementary domains with simple behaviour as
atoms and constructed with these atoms the molecules, and proved that such molecules
are surely complete topological invariant for Morse-Smale flows on surfaces.

A description of the class of the topological conjugacy of Morse-Smale flows, in
a difference with the equivalence, requires an introduction of continuous invariants
(moduli), corresponding with the periods of the limit cycles at least. Thus, one class of
the equivalence contains continuum classes of the topological conjugacy. In this paper
we show that for gradient-like systems these classes are coincide, namely we prove the
following fact.

Theorem 1. If two gradient-like flows on a closed surface are topological equivalent
then they are topologically conjugate.

2. Necessary facts and statements

Definition 1. A map h of a metric space (X, ρX) to a metric space (Y, ρY ) is called
Lipschitz, if there is some positive constant L called as Lipschitz constant such that
ρY (h(x), h(y)) ≤ L · ρX(x, y) for all x, y ∈ X.

Let C̃0(Rn) be the Banach space of bounded continuous maps from Rn to Rn with
uniform norm ||u|| = sup{||u(x)|| : x ∈ Rn}.

Proposition 1 ([5], Ch. 2, Lemma 4.3). Let ϕ : Rn → Rn be a hyperbolic isomorphism.
Then there exists a value ε > 0 such that for every φ1, φ2 ∈ C̃0(Rn) with the Lipschitz
constant less or equal than ε there is an unique continuous map h : Rn → Rn of the
form

h = I + u,

where I is the identity map and u ∈ C̃0(Rn), such that

h(ϕ+ φ1) = (ϕ+ φ2)h.

Moreover h is a homeomorphism.

Proposition 2 ([5], Ch. 2, Lemma 4.9). Let F : Rn → Rn be a Cr-vector field with the
equilibrium point 0. Then for every ε > 0 there exists a Cr-vector field G : Rn → Rn

and neighborhoods U ⊂ V of 0 such that:
1) G = F on U and G = DF0 outside V ;
2) G is Lipschitz and generates a flow gt on Rn of the form

gt = ϕt + φt,

where ϕt is a flow generated by the vector field DF0, φt ∈ C̃0(Rn) for all t ∈ [−2, 2],
φ1 has the Lipschitz constant less than ε and Dφ1

0 = 0.
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Now let Mn be a Cr-smooth n-manifold.

Lemma 1. Let F : Mn →Mn be a Cr-vector field with the hyperbolic equilibrium point
p. Then there exists a neighbourhood U of the point p where the flow f t generated by
F is topologically conjugated to the flow ϕt generated by DFp.

Proof. As the problem is local, and there exists some local map (V, θ), where U ⊂ V ,
θ : V → Rn is homeomorphism and θ(p) = 0, let us think that Mn = Rn and p = 0.

As 0 is the hyperbolic equilibrium point of F then ϕ = ϕ1 is the hyperbolic
isomorphism of Rn. Let ε be a constant from Proposition 1 for ϕ and G be the vector
field from Proposition 2 for F and ε. Then the flows f t and gt generated by F and
G, accordingly, are coincide on U and, hence, they are topologically conjugate on U .
Using an idea of the proof of Theorem 4.10 from Ch. 2 of [5], let us show that the flow
ϕt is topologically conjugate to gt in Rn.

By Propositions 1 and 2 there exists an unique homeomorphism h : Rn → Rn being
in a finite distance from the identity map such that hg = ϕh. Let

H =

1∫
0

ϕ−thgtdt.

This map is continuous and, by Proposition 2, is in a finite distance from the identity
map. Let us show that ϕsH = Hgs for all s ∈ R, all we need for this is to consider the
segment from 0 to 1, because it is fundamental. Let us take and fix some s from [0, 1].
We have

ϕ−sHgs = ϕ−s

 1∫
0

ϕ−thgtdt

 gs =

1∫
0

ϕ−(t+s)hgt+sdt.

Let u = t+ s− 1, then
1∫

0

ϕ−(t+s)hgt+sdt =

s∫
−1+s

ϕ−u−1hgu+1du =

=

0∫
−1+s

ϕ−uϕ−1hg1gudu+

s∫
0

ϕ−u−1hgu+1du.

Let v = u+1 in the first sum and v = u in the second one and recall that ϕ−1hg1 = h.
It gives us the formula

ϕ−sHgs =

s∫
0

ϕ−vhgvdu+

1∫
s

ϕ−vhgvdu = H.

It implies that H is the continuous map being in a finite distance from the identity
map and conjugating the flow ϕt with gt. As hg1 = ϕ1h and Hg1 = ϕ1H, uniqueness
of solving of this equation gives h = H.
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Proposition 3 ([7], Ch. 4, Theorem 7.1). Let A and B be two n×n real matrices such
that all the eigenvalues of A and B have nonzero real part and the dimension of the
direct sum of all the eigenspaces with negative (and, obviously, positive too) real part
is the same for A and B. Then the two flows generated by the vector fields ẋ = Ax
and ẋ = Bx are topologically conjugate.

3. The proof of the main theorem

Let S be a closed surface and f t : S × R → S be a C1 gradient-like flow. Then for
every wandering trajectory ℓ of f t there are exactly two different fixed points p, q of f t

such that the boundary of the trajectory has the form

cl(ℓ)\ℓ = {p, q}

and the trajectory is directed from p to q. In this case we will denote the trajectory by
ℓp,q assuming that the trajectory is directed from p to q.

Let f t and f ′t be topologically equivalent C1 gradient-like flows, i.e. there is a
homeomorphism h : S → S mapping trajectories of f t into trajectories of f ′t preserving
orientation. It implies that h maps the fixed points of f t to the fixed points of f ′t, what
we will denote by p′ = h(p) for a fixed point p of f t. Then

h(ℓpq) = ℓ′p′q′

for every wandering trajectory ℓpq of f t.
By Lemma 1 and Proposition 3 there are neighbourhoods up, up′ of p, p′ respectively

such that f t|up , f ′t|up′ are topologically conjugated by a homeomorphism hp : up → up′ .

u

Fig. 2. Neighbourhood uσ

Let σ be a saddle point of f . Without loss of generality we will assume that the
neighborhood uσ has a form as on Figure 2, uσ′ = hσ(uσ) and a map h−1hσ preserves
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separatrix of σ. For a point x ∈ S denote by Ox (O′
x) the orbit of the flow f t (f ′t)

passing through the point x. Let

Vσ =
∪

x∈cl(uσ)

Ox, Vσ′ =
∪

x∈cl(uσ′ )

O′
x.

Let us extend hσ up to a homeomorphism hVσ : Vσ → Vσ′ by the following rule (see
Fig. 3). For a point z ∈ (Vσ\cl(uσ)) let {z0} = Oz ∩ ∂uσ and f tz(z0) = z for tz ∈ R,
then

hVσ(z) = f ′tz(hσ(z0)).
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Fig. 3. Main constructions for f t (on the left sphere) and for f ′t (on the right sphere)

Let V (V ′) be a union of all Vσ (Vσ′) and hV : V → V ′ be a homeomorphism
composed by hVσ .

To extend the homeomorphisms hV up to ambient conjugating homeomorphism
note that the closure T of any connected component of the set S \ (V ∪ Ωf t) belongs
to the basin of a sink ω. As h−1hσ preserves separatrix of σ then there is the closure
T ′ ⊂ W s

ω′ of an unique connected component of the set S \ (V ′ ∪ Ωf ′t) such that
h(T ) ∩ T ′ ̸= ∅. Let us extend hV to T by conjugating homeomorphism hT .

By Lemma 1 flows f t|uω and f ′t|uh(ω)
are conjugate by means of ψω and ψω′

respectively to some linear flows in some neighbourhood of 0 on the plane. Let γ0
be some closed curve without a contact, transversally crossing all trajectories of the
linear flows, and let γ = ψ−1

ω (γ0), γ′ = ψ−1
ω′ (γ0). So we correctly constructed a closed

curve without a contact around ω and ω′.
Let JT = γ ∩ T and let a0, a1 be the endpoints of the arc JT . Then there are saddle

points σ0, σ1 (possible σ0 = σ1) such that ai ∈ (JT ∩ Vσi
), i = 0, 1. Similarly the arc

J̃T ′ = γ′ ∩ T ′ is bounded by the points ã0, ã1 belonging to Vσ′
0
, Vσ′

1
, accordingly. Let

t0, t1 ∈ R so that f ′ti(ãi) = hV (ai), i = 0, 1 and ρ : J̃T ′ → [0, 1] be a homeomorphism
such that ρ(ãi) = i, i = 0, 1. Let

JT ′ = {f ′tz(z̃) | z̃ ∈ J̃T ′ , tz = t0 + (t1 − t0)ρ(z̃)}.
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Define an arbitrary homeomorphism hJ : JT → JT ′ so that hJ(ai) = hV (ai), i = 0, 1.
Then every point z in T is uniquely defined by the point z0 = Oz ∩ JT and the value
tz ∈ R such that f tz(z0) = z. Let us define a homeomorphism hT : T → T ′ by the
formula

hT (f
tz(z0)) = f ′tz(hJ(z0)).

Let us define the conjugating homeomorphism hc : S → S so that hc|V = hV , hc|T = hT
and hc|Ωft

= h|Ωft
. Thus the conjugating homeomorphism is constructed and Theorem

is proved.
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