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Abstracts. We study conditions for extinction and coexistence of predators in a general family of
systems with many predators feeding on the same prey. We call the system degenerated in the case
some predators go extinct and the essential dynamics occurs in a lower dimensional subspace.
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1. Introduction

We consider the (n+ 1)-dimensional system

ẋi = ϕi(s)xi , ṡ = h(s)−
n∑

i=1

ψi(s)xi , i = 1, 2, ..., n. (1.1)

A1 : All the considered functions are of the class C2[0,∞) and the variables xi and
s are non-negative: xi ≥ 0, s ≥ 0.

A2 : ψi(0) = 0, ψ′
i(s) > 0 for s > 0.

Here and further we will suppose that i takes values from the set {1, 2, . . . , n}.
A3 : ϕ′

i(s) > 0 for s > 0 and there exists λi > 0 such that ϕi(λi) = 0.

A4 : h(0) = h(1) = 0, h′(1) < 0 and h′′(s) < 0 for s > 0.

A5 : 0 < λn < · · · < λ2 < λ1 < 1.

These and analogous systems for different assumptions on the right hand sides
have been considered by many authors [1]-[5] of both mathematical and application
view point. We note that our reference list cannot be full. It should be too large.

Analogous systems are considered from another point of view in [6, 7]. However the
questions of dissipativity and existing of inner set are on the first place here also.

Systems with the following special choice of functions

h(s) = γs(K − s), ψi(s) = αi
s

s+ ai
, ϕi(s) = miψi(s)− di, (1.2)

where all introduced parameters are positive, have been examined more extensively.
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It is important to say, that this special choice of model is interesting from the
mathematical point of view even in the three dimensional case. For instance, in [8, 9] the
questions, connected with the problem of the limit cycle uniqueness in the coordinate
planes are considered. This problem is connected with the stability of the planes and,
consequently, with the problem of the inner set existing.

Such systems can have chaotic regimes. They were studied in detail in [11, 12].
Particularly bifurcation diagrams with a chain of period doubling bifurcations for
system (1.1) with (1.2)were given. The functions

h(s) = s(1− s), ϕi(s) =
s− λi
s+ ai

, ψi(s) =
s

s+ ai
(1.3)

were chosen as an example. In this paper system 1.1 with these functions will be called
standard system. We consider a broad class of systems of type (1.1), including right
hand sides of type (1.2) and standard system as main example.

The conditions assumed for the system are divided into two groups. In the first group
we have assumptions of general type (A1-A5). In the other group we have assumptions
of technical type arising in the formulation of statements (D6-D7 and A6-A7). It is easy
to verify that all standard systems are included.

It follows from A1-A5 that the system has n+ 1 equilibria:
O(0, . . . , 0, 0) which is a saddle with n-dimensional stable manifold s = 0 and one

dimensional unstable manifold: xi = 0 (i = 1, . . . , n), 0 < s < 1.
O′(0, . . . , 0, 1) which is a saddle with one dimensional stable manifold xi = 0 (i =

1, . . . , n) and n-dimensional unstable manifold, which we will denote by W u(O′).

One point in each hyperplane: Oi: s = λi, xj = 0, j ̸= i, xi =
h(λi)

ψi(λi)
.

The Jacobian matrix has the form
ϕ1 0 ... ϕ′

1x1
0 ϕ2 ... ϕ′

2x2
. . ... .

−ψ1 −ψ2 ... h′ − Σn
i=1ψ

′
ixi

 . (1.4)

2. Dissipativity

A compact set in a phase space is called a Levinson set, if it is positively invariant
and has a base of globally absorbing neighbourhoods.

A typical problem is to construct a good Levinson set. Below we give one result in
this direction. Let T (O′) be the tangent plane to the unstable manifold W u(O′) in the
point O′. We introduce also a couple of technical conditions:
D1 : If s < 1, then h(s)ψ1(1) ≥ −h′(s)(1− s)ψ1(s).
D2 : If s < 1, then ϕi(s)ψi(1)− ϕi(1)ψi(s) < 0.

Let us note that the conditions D1, D2 are satisfied for standard system (1.3).
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Now let V0 is the simplex determined by the vertices O, O′, q̄1, q̄2, ..., q̄n, where

q̄i = (0, ..., qi, ...), qi =
ϕi(1)− h′(1)

ψi(1)
, i = 1, 2, ..., n. (2.1)

Theorem 1. Let us consider system (1.1) satisfying conditions A1-A5 and D1-D2.
The trajectories intersect the tangent plane T (O′) transversally, except at O′.

Moreover at any point, except at O′, the trajectories intersect this plane in the direction
inside a simplex V0, which is a Levinson set.

Proof. The Jacobian matrix at the point O′ has the form
ϕ1(1) 0 ... 0
0 ϕ2(1) ... 0
. . ... .

−ψ1(1) −ψ2(1) ... h′(1)

 . (2.2)

where all the numbers on the diagonal are positive except h′(1). The tangent plane is
defined by the equation

x1
q1

+
x2
q2

+ . . . +
xn
qn

+ s = 1, (2.3)

where qi are defined by (2.1), so that the vector orthogonal to this plane and directed
outside the simplex can be written as(

1

q1
,
1

q2
, . . .

1

qn
, 1

)
. (2.4)

At any point of this plane the scalar product (let us denote it by A) of this vector
with the vector of the system (1.1) is given by

A =

⟨(
1

q1
, . . . ,

1

qn
, 1

)
,

(
ϕ1(s)x1, . . . , ϕn(s)xn, h(s)−

n∑
i=1

ψi(s)xi

)⟩
=

=
n∑

i=1

ϕi(s)

qi
xi + h(s) −

n∑
i=1

ψi(s)xi.

Consider now the family of the parallel planes

x1
q1

+
x2
q2

+ . . . +
xn
qn

+ s = V , (2.5)

where V ≥ 1. It can be checked directly, that if s = 1 then A < 0 except at O′, where
A = 0. In other points we get

A = h(s) +
n∑

i=1

[
ϕi(s)

qi
− ψi(s)

]
xi =
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=
h(s)

1− s
(1− V ) +

h(s)

1− s
(V − s) +

n∑
i=1

xi
qi

[ϕi(s) − qiψi(s) ] =

=
h(s)

1− s
(1− V ) +

n∑
i=1

xi
qi

[
h(s)

1− s
+ ϕi(s) − qiψi(s)

]
<

<

n∑
i=1

xi
qi

[
−h

′(1)ψi(s)

ψi(1)
− qiψi(s) + ϕi(s)

]
=

– we use D1 here –

=
n∑

i=1

xi
qi

[
−ψi(s)

ψi(1)
(−ϕi(1) + h′(1)− h′(1)) + ϕi(s)

]
=

=
n∑

i=1

xi
qi

[
−ϕi(s)ψi(1) − ϕi(1)ψi(s)

ψi(1)

]
.

By assumption D2 the proof is complete.

An example. Now, as in [2] we consider the system

ẋ = (mϕ(s)− d)x, ṡ = h(s)− ψ(s)x, (2.6)

with
h(s) = s(1− s), ψ(s) =

s

s+ a
, m = 1, a = 0.5, d = 0.25.

Hence,
h′(1) = −1, ϕ(1) = 7/12, ψ(1) = 2/3 ⇒ q = 19/8.

Therefore the Levinson simplex in this case is defined by the straight line
s = 1− 8x/19 . The estimate in [2] gives the region bounded by lines s = 1, x+s = 5.

3. Degeneracy

Definition 1. An invariant set of system 1.1 will be called an inner set if its closure
does not intersect with the boundary of R+

n+1. If a system does not have inner sets it
will be called degenerated.

Definition 2. The vector function F = F (s) = (F1, . . . , Fn) is called linearly
determined on the interval I = [a, b], or the function collection F1, . . . , Fn is called
linearly determined on I, if there exists a vector k = (k1, . . . , kn) such that ⟨k, F (s)⟩ ≤ 0
for all s ∈ I and the inequality does not degenerate to equality on any subinterval
I1 ⊂ I. A collection F1, . . . , Fn which is not linearly determined will be called linearly
connected.

Further we will consider only functions defined on the interval I = [0, 1].
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Theorem 2. If the function ϕ = (ϕ1, . . . , ϕn) is linearly determined on I, then system
(1.1) is degenerated .

Proof. We suppose the opposite, that is, that there exists a trajectory (ξ, ζ) =
(ξ1, . . . , ξn, ζ), with closure wholly included in V = intR+

n+1.

We consider the function L(x, s) = ln(xk11 · · · xknn ) on V , where k = (k1, . . . , kn) is
the vector making ϕ determined. The derivative of L along the trajectory (ξ, ζ) equals
L̇ = ⟨k, ϕ(ζ(t))⟩ ≤ 0 and, consequently, L is a Lyapunov function. The limit set of the
trajectory (ξ, ζ) is contained in the set W = {(x, s)|L̇ = 0}. (This can be proved by
standard methods. See for instance [10].)

But any connected component of W is contained in one hyperplane s = const > 0,
which cannot contain whole trajectories except singular points. Because V does not
contain any equilibirum the theorem is proved.

We will now look at conditions for linear connectedness.

Statement 1. In the case n = 1, the function ϕ is linearly connected if and only if
system (1.1) is degenerated.

Statement 2. Suppose n > 1. If there exists a linearly determined subcollection
ϕj1 , . . . , ϕjk , k < n for the collection ϕ = (ϕ1, . . . , ϕn), then the collection ϕ is linearly
determined.

Thus we can assumed that the functions are numbered according to condition A5.
Remark also that ϕi(0) < 0, ϕi(1) > 0.

In connection to ϕ we consider the functions

f = (f1, . . . , fn), g = (g1, . . . , gn), fi(s) =
ϕi(s)

ϕi(0)
, gi(s) =

ϕi(s)

ϕi(1)
, i = 1, . . . , n.

Definition 3. We will say that scalar the functions p = p(s) and q = q(s) intersect at
some point of the interval I, if in any neighbourhood of this point there exist s1 and
s2, such that p(s1)− q(s1) < 0 and p(s2)− q(s2) > 0.

We will say that the functions p and q intersect on the interval I, if either there
exists a point, where they intersect, or a subinterval I1 ⊂ I, where they are linearly
dependent.

Statement 3. If the collection ϕ = (ϕ1, . . . , ϕn) is linearly connected, then any
functions of the collections ϕ, f and g intersect pairwise.

Proof. We assume the opposite. For example, that the functions f1 and f2 do not
intersect. This means that f1(s)− f2(s) ̸= 0 on I. If f1(s)− f2(s) ≤ 0 then

k1ϕ1(s) + k2ϕ2(s) ≥ 0, ∀s ∈ I, where k1 = − 1

ϕ1(0)
, k2 =

1

ϕ2(0)

and the inequality does not degenerate to equality on any interval.
Choosing ki = 0 for i > 2, when n > 2, we get ⟨k, ϕ(s)⟩ ≥ 0, which is a contradiction.

Statement is proved.
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In order to get explicit conditions for the linear connectedness of ϕ, we introduce
more assumptions.

A6: The equation kiϕi = kjϕj does not have more than two solutions on I for any
indices i, j, i ̸= j, and any constants ki and kj, such that at least one of them is
non-zero.

A7: The equation ciϕi + cjϕj + ckϕk = 0 does not have more than three solutions
on the interval I for any indices i, j, k and for any constants ci, cj, ck, such that at least
one of them is non-zero.

It is easily verified that the standard functions ϕi =
s− λi
s+ ai

satisfy these conditions.

We also notice that if all numbers ai are different, then the collection of functions of
type (1.3) are not linearly dependent on any subinterval.

We introduce the notations αi = gi(0), βi = fi(1) = α−1
i .

Theorem 3. We assume that the functions ϕ satisfy the conditions A1 − A6.
If ϕ is linearly connected on I, then
1) β1 < β2 < . . . < βn, α1 > α2 > . . . > αn.
2) The functions fi, i = 1, . . . , n, intersect pairwise exactly one time on (0, 1),

and if θij is the intersection point of fi and fj(i < j) , then θij ∈ (λi, 1).
Analogously, the functions gi, i = 1, . . . , n, intersect pairwise exactly one time on

(0, 1), and if τij is the intersection point of the functions gi and gj(i < j) , then
τij ∈ (0, λj).

3) If n > 2, and the function ϕ satisfy condition A7 and θik and θjk are the
intersection points of fi and fj with fk and i < j < k, then θik > θjk.

Analogously, if τik and τjk are intersection points of gi, gj with gk, and i < j < k,
then τik > τjk.

Proof. Statement 2) follows from the pairwise linearly connectedness of the functions
ϕi and ϕj. We show this for the functions f1 and f2. Clearly these functions must have
an intersection and according to A6 only one. We suppose the intersection is not in
I1 = (λ1, 1). Then f2 < f1 in I1.

-

6
φi(s) =

s − λi

s + ai

s

y

− 2

−1

1

1λ1

λ2

0

-

6
fi(s) =

φi(s)

φi(0)

s

y

− 2

−1

1

1λ1

λ2

0

-

6
gi(s) =

φi(s)

φi(1)

s

y

− 4

−3

−2

−1

1

1λ1

λ2

Рис. 1. λ1 = 0.6, λ2 = 0.35, a1 = 0.55, a2 = 0.1

We consider the minimal k > 0 such, that kf2(s) ≤ f1(s) for all s ∈ I1. Evidently
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k < 1. From A6 and kf2(0) < f1(0) and kf2(λ2) < f1(λ2) follows that the same
inequality is satisfied in s ∈ [0, λ2].

The inequality is automatically satisfied in the segment [λ2, λ1]. We obtain that
kf2(s) ≤ f1(s) everywhere in I, which contradicts the linear connectedness of ϕ.
Analogously, 2) is proved for any pair from collection g. Further:

λ1 > λ2 ⇒ f1(λ1) > f2(λ1) ⇒ f1(1) < f2(1) ⇒ β1 < β2.

We get similar inequalities for the functions g1, g2 from which follows α1 > α2. Thus
1) is proved.

We now prove 3) for any three functions from collection f. For example, for f1, f2, f3.
We assume the opposite, that is, θ13 < θ23. We define c0 = f2(λ3)/f1(λ3). Clearly,
0 < c0 < 1. We consider the function lc(s) = f2(s) − cf1(s) − (1 − c)f3(s). It is clear,
that lc(0) = 0 and lc(θ13) < 0 for any c ∈ [0, 1]. Moreover, lc0(λ3) = 0.

We consider the intervals on which lc0(s) > 0 (if such do not exist, proof is finished).
According to A7 the function lc0(s) does not have more than three zeros and thus there
are no more than three of such intervals, and if they are two, then their closure contains
λ3.

In this case there exists a c < c0 such that again there are two of these intervals,
but lc(λ3) < 0, and thus their closure does not contain λ3.

-

6
fi(s) =

φi(s)

φi(0)

s

− 1

1

1λ1

λ2

λ30

-

6
lc(s)

s

1

10

−

1

10

1λ1

λ2

λ30

Рис. 2. λ1 = 0.6, λ2 = 0.35, λ3 = 0.25, a1 = 0.55, a2 = 0.1, a3 = 0.05

Consequently lc does not have less than four zeros, which contradicts assumption.
It remains to consider the case, when there are only one interval of positiveness. We
note that this should be satisfied for all c ∈ [0, c0]. Moreover the interval of positiveness
intersect for nearby values of parameters. Consequently the interval should be on the
left for c = 0, because the interval is to left of θ13 for c = c0.

On the other side, the inequality l0(1) > 0 is satisfied and we get a contradiction
proving 3). Theorem is proved.

We now consider sufficient conditions.
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Theorem 4. Suppose function ϕ satisfies conditions A1 − A5. Then
in the case when n = 2, one of the conditions β1 > β2 or α1 > α2 is sufficient for

linear connectedness;
for the case n = 3, one of conditions β1 > β2 > β3, θ13 > θ23 or α1 > α2 >

α3, τ13 < τ23 is sufficent for linear connectedness.

Proof. Let n = 2 and β1 > β2. We suppose that the function f is linearly determined,
that is that k1f1(s) + k2f2(s) ≤ 0 for some vector k, |k| ̸= 0. Substituting s =
0, λ2, λ1, 1, we get a contradiction with the inequality for k, which proves this part
of the theorem.

Let n = 3 and β1 > β2 > β3. We assume that the function f is linearly determined,
that is that k1f1(s) + k2f2(s) + k3f3(s) ≤ 0 for some vector k, |k| ̸= 0. Substituting
s = 0, we get k1 + k2 + k3 ≥ 0. Substituting s = θ23, we get k1µ + k2 + k3 ≤ 0, where
µ = f1(θ23)/f2(θ23) < 1, from which follows k1 > 0.

Analogously, substituting θ12, we get k3 > 0 and, automatically, k2 < 0.
On the other side, for s = θ13 we get (k1 + k3)f1(θ13) + k2f2(θ13) ≤ 0. But then

0 < f1(θ13) < f2(θ13), leads to a contradiction proving the theorem.

4. Standard three dimensional system (n=2)

We use here some ideas and methods of [12], where sufficient conditions for
degeneracy of the standard system were obtained.

Explicit formulas for degeneracy in the standard system were obtained in [?]-[12]
for n = 2 and moreover theorem 2 was proved for this system. Concretely it was shown
that, when λ2 < λ1, if one of the following conditions

1) a1 < a2,
2) a1λ2 − a2λ1 ≤ 0,
3) a1a2(λ1 − λ2) + λ1λ2(a1 − a2) ≥ a1λ2 − a2λ1,
is satisfied then one of the coordinate plane is globally attracting in intR+

3 .
We introduce the notations

γ =
λ2a1
λ1a2

, α =
1− λ2
1 + a2

· 1 + a1
1− λ1

.

In case λ1 > λ2 it follows directly from theorems 3-4 that the function

ϕ(s) = (ϕ1(s), ϕ(s)) =

(
s− λ1
s+ a1

,
s− λ2
s+ a2

)
is linearly connected if γ > α.
We show that then α > 1. We first prove that a1 > a2. Indeed, let a1 ≤ a2. Then

λ2
1− λ2

· a1
1 + a1

≤ λ1
1− λ1

· a2
1 + a2

⇔ λ2a1
λ1a2

≤ 1− λ2
1− λ1

· 1 + a1
1 + a2

.

We got a contradiction.
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Further:

λ1 > λ2, a1 > a2 ⇒
1− λ2
1− λ1

> 1 &
1 + a1
1 + a2

> 1 ⇒ α > 1.

Thus the condition λ1 > λ2 is equivalent to γ > α > 1 in the case of linear
connectedness.

Simple transforms show that the complement to these inequalities conicides with
the set of parameters given by 1)− 3).

5. Conclusion

We have obtained conditions for dissipativity and degeneracy (meaning extinction
of some predators) for a general family of predator-prey systems with many predators
and one prey. Considering degeneracy we have only used the properties of the equations
of the predators. Using the equation for the prey will give better results. Finally we
include figure 3 for the standard three dimensional system showing results of numerical
experiments for the regions of degeneracy of one predators and for existence of inner
solutions. In region 1 predator x2 goes extinct and x1 in region 4. An inner solution
exists in regions 2 and 3 and on the boundary between them there is a period doubling
bifurcation. The regions are shown in the parameter plane of parameters λ1 and λ2
keeping a1 and a2 fixed.

Рис. 3. Regions of extinction and coexistence for a1 = 0.2, a2 = 0.02

We observe that condition 1) in previous section implies condition 2) which implies
condition 3) and condition 3) implies x1 → 0. Condition 3) in the figure gives a
subregion of region 4. We also observe that changing the order of variables we get
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analogous conditions in the case when λ1 < λ2 and then corresponding condition 1)
gives x2 → 0 for a1 > a2. This corresponds to a subregion of region 1.
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