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Abstracts. Magnetic charging topology explains many energy processes (flares, prominences, etc.) in
the solar corona by changing the domain structure associated with the appearance or disappearance
of the separators. It is known that at most of the nulls of the magnetic field are prone. In this paper
it is proved that a topology of the domains of a field with the prone nulls is completely described by
a multi-color graph. In addition, we give an efficient algorithm for distinguishing of these graphs.
Keywords: magnetic fields, model of corona, photosphere magnetic reconnection, dynamics
prominences, multi-color graph, polynomial-time algorithm.

1. Introduction and the formulation of the results

Understanding the energy processes in the corona of the sun is very important
to explain many of the laws of nature. This paper considered a possible model to
explain such effects in the photosphere as the flares and the prominences. Their origin is
connected with the restructuring of regions (domains), on which the fans and the spines
of the null points of the magnetic field divide the corona of the sun — reconnection.
Therefore, the main questions for this approach are the qualitative partition of the solar
corona into domains, as well as the existence of the separators (the lines of intersection
of fans) — marks of upcoming or already occurred reconnection. There are different
approaches to the study of the topology of domains, such as the construction of graphs
that reflect the structure and the relative position of the domains [3] or footprints —
traces of spines and fans on the photosphere [8]. We have proposed a new approach
consisting in distinguishing of traces of fans on some circle on the photosphere. We
describe these trace on a language of multi-color graph whose isomorphic class is a
complete invariant for the topology of domains and gives information on the number
of the separators. In more detail.

By the topological approach the magnetic field in the corona is believed to arise from
a large number of dipoles in the solar interior. The dipoles are interpreted as locations
where flux tubes originating in the solar interior break through the surface and spread
out into the atmosphere (see figure 1). We use the assumptions of Magnetic Charge
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Рис. 1. The dipoles in the solar interior

Topology [7], where photospheric flux patches are modeled as point sources (charges) on
the photosphere. Although this suggestion violate the solenoidal condition, but each
source is considered to represent a flux tube passing through the solar surface and
spreading out into the overlying corona, then this simplification is allowable. Following
[2] for a model of the magnetic field B with point sources the two-dimensional sphere
P = {(x, y, z, w) ∈ S3 | w = 0} in three-dimensional sphere S3 = {(x, y, z, w) ∈
R4 | x2 + y2 + z2 + w2 = 1} is used as the photosphere and the region {(x, y, z, w) ∈
S3 | w > 0} as solar corona. Moreover we suppose that B is symmetrically extended
to the region {(x, y, z, w) ∈ S3 | w < 0} being termed the mirror corona and, hence, it

is defined on M = S3 \
k∪

i=1

qi where q1, . . . , qk are the points on the photosphere where

the charges are situated.

Magnetic nulls are the points where the magnitude of magnetic field vector vanishes.
Due to the solenoidal condition ∇ · B = 0 three eigenvalues λ1, λ2, λ3 of the critical
point satisfy the equality λ1+λ2+λ3 = 0. Since B is potential then all eigenvalues are
real number. Generically each eigenvalue is different from 0, thus each null of B is a
saddle point. Two quite distinct families of field lines tends to a null point: the spine is
a line and the fan is a surface. For a null p denote by Sp the spine and by Fp the fan of
p. The spines of different nulls have no intersections in general position. A null is called
positive (negative) if λ1 · λ2 · λ3 > 0 (λ1 · λ2 · λ3 < 0). The topological structure of a
magnetic field B is largely defined by null points, spines, fans, and separators, the union
of which forms the so-called skeleton of the magnetic field. There are several types of
nulls. A null which belongs to the photosphere is called photospheric. A photospheric
null point whose spine lies in the photosphere is called prone, whereas a photospheric
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DESCRIPTION OF DOMAIN STRUCTURES 5

null with a spine directed vertically is called upright. The coronal null is a null above
the photosphere. It follows from [1] that the most nulls are prone.

When two fans have intersection they form a separator, which joins two oppositely
signed null points. Fans divide the corona into different regions which called domains.
Appearance and disappearance of separators change the topology of domains splitting.
Such situation is called separator reconnection, which is one of the major reconnection
mechanisms [15]. Much papers [3], [10], [11], [12] were devoted to classification of the
magnetic field configurations that arise from such point-source models. It is naturally
to introduce the following definition which goes back to the classic paper [14], see also
[16].

Definition 1. One says that two coronal magnetic fields B,B′ are topologically
equivalent if there is a homeomorphism H : M → M sending magnetic lines of B
to magnetic lines of B′ with preserving orientation on the lines.

Denote by B the set of the magnetic fields B with the following properties:
1) each null of B is prone;
2) if two fans of B are intersected then they are either coincide, either have

contact along one curve on the photosphere or have transversal intersection along two
symmetric with respect to the photosphere curves;

3) the closures of the spines of different nulls have no intersection.
Now let B ∈ B.

Theorem 1. For each magnetic field B ∈ B there is a circle C ⊂ P which is transversal
to the flow generated by B on P and such that each fan intersects C at exactly two
points.

We will called such circle C by photosphere section. Denote by N the set of nulls
of B. Set W = P \

∪
p∈N

Sp, F =
∪
p∈N

Fp and X = C ∩ F . Denote by Nu (N s) the set of

positive (negative) nulls of B. Set Fu =
∪

p∈Nu

Fp (F s =
∪

p∈Ns

Fp), Xu = C ∩ Fu (Xs =

C ∩ F s) and X t = Xu ∩Xs.
In order to introduce a combinatorial topological invariant of the magnetic field

B ∈ B we recall the following definitions.
A finite graph Γ is an ordered pair (V,E), such that the following conditions hold:

V is a non-empty finite set of vertices; E is a set of pairs of vertices called edges.
If a graph contains an edge e = (a, b), then each of the vertices a, b is said to be

incident to the edge e and the vertices a and b are said to be connected by the edge e.
A path in a graph is a finite sequence of its vertices and edges of the form:

b0, (b0, b1), b1, · · · , bi−1, (bi−1, bi), bi, · · · bk−1, (bk−1, bk), bk, k ≥ 1. The number k is called
the length of the path, it is equal to the number of edges involved in the path.

A cycle of length k, k ∈ N in a graph is a finite subset of vertices and edges of the
form {b0, (b0, b1), b1, · · · , bi−1, (bi−1, bi), bi, · · · bk−1, (bk−1, b0)}. A simple cycle is a cycle
all of whose vertices and edges are pairwise distinct.
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A graph Γ is called multi-color graph if the set of vertices or edges of Γ is the union
of finite number subsets each of which consists of the vertices or edges of the same
color.

Two multi-color graphs Γ and Γ′ are said to be isomorphic if there exists a one-to-
one correspondence ξ between the sets of their vertices which preserve the relations of
incidence and the color.

For our invariant we will use three colors, we denote these colors by the letters s, t,
u and, for brevity, refer to these vertices or edges as s-, t-, u-vertices or s-, t-, u-edges.
We construct a multi-color graph ΓB, corresponding to a magnetic field B ∈ B as
follows (see figure 2 where s, t, u are green, blue, red, accordingly):

В1

В2

В3

В4

ГВ1

ГВ2

ГВ3

ГВ4

Рис. 2. Magnetic fields and their multi-color graphs

1) the t-vertices are in a one-to-one correspondence with the points of the set X t;
2) the s-vertices (u-vertices) are in a one-to-one correspondence with the points of

the set Xs \X t (Xu \X t);
3) the t-edges are in a one-to-one correspondence with the connected components

of C \X and two vertices of the graph are incident to an t-edge if the corresponding
points are boundary points for corresponding connected component;
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4) two vertices of the graph are incident to an s-edge (u-edge) if the corresponding
points are exactly Fp ∩ C for some null p ∈ N s (p ∈ Nu).

Theorem 2. Magnetic fields B,B′ from B are topologically equivalent if and only if
their multi-color graphs ΓB, ΓB′ are isomorphic.

Theorem 2 motivates to ask the question about the computational complexity of
distinguishing two multi-color graphs corresponding to magnetic fields. An algorithm
solving the graph isomorphism problem is considered to be efficient if its running time
is bounded by a polynomial on the number of vertices of input graphs. This problem
can really be solved in polynomial time for the graphs of magnetic fields.

Theorem 3. Isomorphism of multi-color graphs corresponding to Solar magnetic fields
can be recognized in polynomial time.

2. Necessary and Sufficient conditions for the topological
equivalence of magnetic fields from B

To prove the results we compactify the magnetic field lines in the places of point-
charge by the bundle of straight lines, such idea was used in [6] for the finding of the
separators of magnetic fields in electrically conducting fluids. Then the magnetic lines
of the field B coincide geometrically on M with trajectories of a three-dimensional flow
f τ : S3 → S3 with the following properties:

1) the non-wandering set Ω(f τ ) of f τ consists of finite number hyperbolic
equilibrium states2 all of them belong to the photosphere P ;

2) all trajectories of f τ are symmetric with respect the photosphere P and number
of sinks coincide with number of sources;

3) the closures of one-dimensional invariant manifolds of different saddle points are
disjoint;

4) if two-dimensional invariant manifolds of different saddle points are intersected
then they are either coincide, either have contact along one curve on the
photosphere or have transversal intersection along two symmetric with respect
to the photosphere curves.

Denote by G the set of flows with properties above. By the construction we see the
following interrelation between magnetic field B ∈ B and its compactification f τ ∈ G:

2An equilibrium state w of the flow fτ is called hyperbolic if it has no eigenvalues with zero real
part. Any hyperbolic equilibrium state w of the flow fτ possesses invariant manifolds: stable manifold
W s

w = {y ∈ S3 : lim
τ→+∞

d(fτ (y), w) = 0}, unstable manifold Wu
w = {y ∈ S3 : lim

τ→−∞
d(fτ (y), w) = 0}

which are homeomorphic to Rns , Rnu , where ns, nu — the numbers of the eigenvalues with negative
and positive real parts, correspondingly, d — a metric on S3. We will denote by dim W s

w = ns,
dim Wu

w = nu the dimensions of W s
w and Wu

w .
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- the charges coincide with the sink and source equilibrium states,

- the null points coincide with the saddle equilibrium states,

- the fan (spine) of each null coincides with two-dimensional (one-dimensional)
invariant manifold of the corresponding saddle,

- the separators coincide with heteroclinic curves — connected component of the
intersection of two-dimensional invariant manifolds of the saddle points,

- the magnetic lines of B coincide with the trajectories of f τ on M

- magnetic fields B,B′ are equivalent if and only if corresponding flows f τ , f ′τ are
equivalent.

Let f τ ∈ G and σ be a saddle point of f τ with the unstable manifold W u
σ and

the stable manifold W s
σ . Denote by Ω1 (Ω2) the set of saddle points σ of f τ such that

dim W u
σ = 1 (dim W u

σ = 2) and by Ω0 (Ω3) the set of sinks (sources). Let us set

A =
∪
σ∈Ω1

cl W u
σ , R =

∪
σ∈Ω2

cl W s
σ .

The following proposition is due to [16] (see also [5] for details).

Proposition 1. For each flow f τ ∈ G the following statements hold:

i) S3 =
∪

x∈Ω(fτ )

W s
x =

∪
x∈Ω(fτ )

W u
x and each invariant manifold W s

x (W u
x ) is a

submanifold3 of S3;

ii) cl W u
x ∩W u

y ̸= ∅ if and only if W u
x ∩W s

y ̸= ∅;

iii) the sets A,R are pairwise disjoint and each of them is connected.

Proof of Theorem 1
Theorem 1 follows from lemma below.

Lemma 1. For each flow f τ ∈ G there is a circle C ⊂ P which is transversal to
the flow f τ |P and such that two-dimensional invariant manifold of each saddle point
intersects C at exactly two points.

Proof. Let us set ϕτ = f τ |P . It follows from the description of class G that f τ is a flow
on S3 with finite hyperbolic non-wandering set, then by Lefschetz formula |Ω0|− |Ω1|+
|Ω2| − |Ω3| = 0, where | · | is the cardinality. In the other side ϕτ is a flow on S3 with
the same non-wandering set, then |Ω0| − |Ω1| − |Ω2|+ |Ω3| = 2. Thus

|Ω0| − |Ω1| = 1.
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Рис. 3. Neighbourhood U(A)

Let us choose neighbourhood U(A) of the set A on P such that ∂U(A) is transversal
all trajectories in (W s

A \ A) ∩ P (see figure 3). Due to item iii) of Proposition 1, U(A)
has euler characteristic 1, it means that U(A) is 2-disk. By item i) of Proposition 1,
W s

A \ A = W u
R \ R. Set Q = W s

A \ A and C = ∂U(A). By item i) of Proposition 1
and symmetry property of f τ , each two-dimensional manifold of saddle point intersect
Q ∩ P along exactly two trajectories. Thus C is required photospheric section.

Proof of Theorem 2
We assign a flow f τ ∈ G for each magnetic field B ∈ B, also we have a graph ΓB

corresponding to B. Then theorem 2 follows from the next lemma.

Lemma 2. Flows f τ , f ′τ are topologically equivalent if and only if multi-color graphs
ΓB,ΓB′ are isomorphic.

Proof. First, we prove necessity. Suppose that f τ and f ′τ from G are topologically
equivalent, that is, there exists a homeomorphism h : S3 → S3 which sends the
trajectories of f τ to trajectories of f ′τ with preservation of orientation. Let us prove
that multi-color graphs ΓB,ΓB′ are isomorphic. We assume without loss of generality
that the graph ΓB′ was constructed by using the photospheric section C ′ = h(C).
Since the conjugating homeomorphism h takes invariant manifolds of fixed points of
f τ to invariant manifolds of f ′τ with preservation of the stability, it follows that this
homeomorphism takes Xs, X t, Xu to X ′s, X ′t, X ′u. Then the requaired isomorphism
ξ : ΓB → ΓB′ is defined by the formula ξ = πf ′hπ−1

f where πf , πf ′ are one-to-one maps
of the set X, X ′ onto the sets of vertices of the graph ΓB, ΓB′ , accordingly.

Let us prove sufficiency. Consider the multi-colour graphs ΓB, ΓB′ of the flows
f τ , f ′τ ∈ G, respectively. Suppose that there exists an isomorphism ξ between the
sets of vertices of ΓB, ΓB′ which preserve the relations of incidence and the color. We
construct step by step a homeomorphism h : S3 → S3 conjugating f τ and f ′τ .

3Let µ ∈ {0, 1, 2, 3}. A subset Y of S3 is said to be its µ-dimensional submanifold if for every point
y of the set Y there is a neighbourhood Uy of y and a homeomorphism ψy : Uy → R3 for which
ψy(Uy ∩ Y ) = Rµ where Rµ ⊂ R3 is the set of points whose last (3− µ) coordinates are zero.
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Step 1. Set V = S3\(A∪R). Similar to proof of Lemma 1, for each flow f τ ∈ G there
is a 2-sphere Σ ⊂ M which is transversal to the flow f τ |V and such that two-dimensional
invariant manifold of each saddle point intersects Σ at exactly one circles. Moreover,
it is possible to construct Σ such that Σ ∩ P = C. Set Cu = Σ ∩ Fu (Cs = Σ ∩ F s),
Ct = Y u ∩ Y s and do the same for f ′τ .

By the construction all vertices and all t-edges the multi-color graph form a simple
cycle and ξ preserves such cycle with the preserving of the color of the vertices than
there exist an orientation-preserving homeomorphism hΣ : Σ → Σ′ such that hΣ(C

u) =
C ′u, hΣ(C

s) = C ′s and hΣ(C
t) = C ′t. We denote by lx (l′x) the trajectory of f τ (of

f ′τ ) passing through x ∈ S3. According to Proposition 1 there are unique pair of
the equilibrium states α(lx), ω(lx) (α(l′x), ω(l′x)) such that lx ⊂ (W u

α(lx)
∩ W s

ω(lx)
)

(l′x ⊂ (W u
α(l′x)

∩W s
ω(l′x)

)). By Proposition 1 we have the following possibilities for point
x ∈ Σ:

- α(lx) ∈ Ω3, ω(lx) ∈ Ω0 for x ∈ Σ \ (Cu ∪ Cs);
- α(lx) ∈ Ω2, ω(lx) ∈ Ω0 for x ∈ (Cu \ Cs);
- α(lx) ∈ Ω3, ω(lx) ∈ Ω1 for x ∈ (Cs \ Cu);
- α(lx) ∈ Ω2, ω(lx) ∈ Ω1 for x ∈ Ct.
For points y1, y2 ∈ cl (lx) denote by [y1, y2] the length of arc [y1, y2] ⊂ lx. For each

point y ∈ lx situated between x and α(lx) (ω(lx)) set ρ(y) = [x,y]
[x,α(lx)]

(ρ(y) = [x,y]
[x,ω(lx)]

).
Similar situation is for points from Σ′. For any point x ∈ Σ, we set x′ = hΣ(x). As
hΣ(C

s) = C ′s, hΣ(C
u) = C ′u then on the set lx a homeomorphism hlx : lx → l′x′ is

well-defined by the formula

hlx(y) = y′ where ρ′(y′) = ρ(y).

Denote by hV : V → V ′ a map composed from hlx , x ∈ Σ. By the construction hV is a
homeomorphism which sends two-dimensional invariant manifolds of the saddle point
σ of f τ to the two-dimensional invariant manifolds of the saddle point σ′ of f ′τ . Let us
show that hV (ω(lx)) = ω(l′x′) for each x ∈ Σ.

Step 2. Denote by Q ⊂ S3 compact 3-ball bounded by Σ and containing Ω0. Then
Q ⊂ W s

Ω0∪Ω1
and the set Dσ = W s

σ ∩ Q is a 2-disk for each σ ∈ Ω1. Denote by Y a
connected component of the set Q \ W s

Ω1
. Then there is a unique sink ω ∈ Ω0 such

that ω ∈ Y ⊂ W s
ω. Simultaneously there is a unique connected component KY of the

set Σ \ Cs belonging Y and such that Y \ A =
∪

x∈KY

(lx ∩ Y ) ∪ ω. Similar situation is

for flow f ′τ . Since hΣ(Σ \ Cs) = Σ′ \ C ′s then hΣ(KY ) is a connected component of
Σ′ \ C ′s belonging to a connected component Y ′ of the set Q′ \W s

Ω′
1

containing a sink
ω′ ∈ Ω′

0. By the construction hV (Y \ A) = Y ′ \ A′ and, hence hV (ω(lx)) = ω(l′x′) for
each x ∈ (Σ \ Cs). By the continuously hV (ω(lx)) = ω(l′x′) for each x ∈ Cs.

Thus hV can be uniquely extended to the sets Ω0,Ω1. We keep the notation hV for
the homeomorphism thus obtained and set p′ = HV (p) for each p ∈ (Ω0 ∪ Ω1).
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DESCRIPTION OF DOMAIN STRUCTURES 11

Step 3. Let σ ∈ Ω1. Denote Aτ flow in R3 generated by a system of linear equations
ẋ = x,
ẏ = y,

ż = −z.

This flow has a unique equilibrium state — hyperbolic saddle located at the origin O.

А
t

f
t

У

z

Рис. 4. Linearization of saddle equilibrium state neighborhood

Stable manifold of this saddle is plane XOY , unstable — axis O. Set

U = {(x, y, z) ∈ R3 : (x2 + y2)z2 ≤ 1}.

It is immediately verified that U is invariant with respect to the flow Aτ . Due to [13]
there is a neighborhood Vσ ⊂ S3 of the saddle equilibrium state σ and a homeomorphism
Hσ : Vσ → U such that the homeomorphism sends the trajectories of flow f τ |Vσ to the
trajectories of flow Aτ |U (see figure 4). Similar neighborhood Vσ′ and a homeomorphism
Hσ′ : Vσ′ → U exist for flow f ′τ . Set Hσ,σ′ = H−1

σ′ Hσ : Vσ → Vσ′ . Without loss of
generality we can assume that homeomorphism Hσ,σ′ sends one-dimensional separatrix
of σ which contains a sink ω in its closure to one-dimensional separatrix of σ′ which
contains a sink ω′ in its closure (in opposite case we use ζHσ instead Hσ where
ζ(x, y, z) = (x, y,−z)).

Step 4. For µ ∈ (0, 1) let us set

Uµ = {(x, y, z) ∈ R3 : (x2 + y2)z2 ≤ µ}

and Vσ,µ = H−1
σ (Uµ). Choose µ such that Hσ,σ′(Vσ,µ) \W u

σ ⊂ HV (Vσ). Set Z = cl (Vσ \
Vσ,µ) and Z ′ = cl (HV (Vσ) \Hσ,σ′(Vσ,µ)). By the construction the sets Z,Z ′ consists of

ISSN 0203–3755 Динамические системы, 2016, том 6(34), №1
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two connected components Z+, Z−, Z
′
+, Z

′
− each of them is homeomorphic to W = S1×

R1×[0, 1]. Denote by HZ+ : Z+ → W, HZ− : Z− → W, HZ′
+
: Z ′

+ → W, HZ′
−
: Z ′

− → W

corresponding homeomorphisms sending trajectories of flows to lines {s} × R1 × {t}.
For t ∈ [0, 1], δ ∈ {+,−} set Wt = S1 × R1 × {t} and

Hδ,0 = HZδ
Hσ,σ′H−1

Zδ
|W0 : W0 → W0, Hδ,1 = HZδ

HVH
−1
Zδ

|W1 : W1 → W1.

As HV and Hσ,σ′ send trajectories of f τ to trajectories of f ′τ then Hδ,0, Hδ,1 have view

Hδ,0(s, r, 0) = (Hδ,0,s(s), Hδ,0,r(r), 0), Hδ,1(s, r, 1) = (Hδ,1,s(s), Hδ,1,r(r), 1).

Let us define homeomorphism Hδ,t : Wt → Wt by formula

Hδ,t(s, r, t) = ((1− t)Hδ,0,s(s) + tHδ,1,s(s), (1− t)Hδ,0,r(r) + tHδ,1,r(r), t).

Denote by HZδ,Z
′
δ

: Zδ → Zδ′ homeomorphism composed for each t ∈ [0, 1] by
H−1

Z′
δ
Hδ,tHZδ

|H−1
Zδ

(Wt)
. Let us define homeomorphism HVσ by formula

HVσ(x) =

{
HZδ,Z

′
δ
(x), x ∈ Zδ,

Hσ,σ′(x), x ∈ Vσ,µ.

By similar way we can define homeomorphism HVσ for each σ ∈ Ω2. The required
homeomorphism h : S3 → S3 is defined by

h(x) =

{
HV (x), x ∈ S3 \ (

∪
σ∈(Ω1∪Ω2)

Vσ),

HVσ(x), x ∈ Vσ, σ ∈ (Ω1 ∪ Ω2).

3. Algorithm to solve the distinguishing problem for multi-color
graphs

In this section, we consider the distinguishing problem for multi-color graphs and
present an efficient algorithm for its solution. An algorithm to solve the problem is
considered to be efficient if it occupies polynomial time on the number of vertices of
a given graph. The notion of an efficiently solvable problem rises to A. Cobham, who
asserts that a problem can be feasibly computed on some computational device only
if it can be computed in time, bounded by a polynomial on the length of input data
[4]. The complexity status of the general graph isomorphism problem, i.e. for graphs
of the general type, is unknown. That is, neither polynomial-time solvability neither
intractability was proved for it. The graphs, associated with Solar magnetic fields,
have some peculiar combinatorial properties. Namely, they have bounded degrees of
vertices. Recall that degree of a vertex of a graph is the number of edges incident to it.
A finite graph is called simple if it does not contain coloured vertices, loops, multiple
and directed edges, coloured edges, simultaneously.
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Proof of Theorem 3
It is known that for some concrete constant c∗ and function f(·) the isomorphism

problem can be solved in O(f(∆)nc∗∆ln(∆)) time for simple n-vertex graphs with
maximum degree ∆ [9]. For each fixed k, this result gives a polynomial-time algorithm
to solve the isomorphism problem in the class of all simple graphs having degrees of all
vertices at most k. This observation and the facts that the graphs of Solar magnetic
fields have degrees of all vertices at most three, the three colors are used to color their
vertices and edges lead to the following idea. By the graphs ΓB1 and ΓB2 of magnetic
fields B1 and B2, we construct simple graphs Γ′

B1
and Γ′

B2
such that ΓB1 and ΓB2 are

isomorphic if and only if Γ′
B1

and Γ′
B2

are isomorphic. The graphs Γ′
B1

and Γ′
B2

will
have degrees of all vertices at most 9, which implies polynomial complexity of their
distinguishing, by the result of Luks.

Recall that a multi-color graph is a graph Γ, equipped by two functions c1 : V (Γ) −→
{1, 2, . . . , k1} and c2 : E(Γ) −→ {1, 2, . . . , k2}. Let ∆(Γ) be the maximum degree
of vertices of the graph Γ. By Γ, we construct a simple graph Γ′ as follows. An s-
star implantation into an edge (a, b) of a graph is to delete the edge from the graph,
add vertices c, c1, . . . , cs and the edges (a, c), (c, b), (c, c1), (c, c2), . . . , (c, cs). Inscribing
an s-cycle in a vertex v of a graph is to add vertices v1, v2, . . . , vs−1 and the edges
(v, v1), (v1, v2, ), . . . , (vs−2,
vs−1), (vs, v) to the graph. For each v ∈ V (Γ), we inscribe a c1(v) + 2-cycle in v. For
each e ∈ E(Γ), we implant a c2(e)+∆(Γ)-star into e. Clearly, the number of vertices of
Γ′ is at most (k1+2)|V (Γ)|+(k2+∆(Γ)+1)|E(Γ)| and degrees of all its vertices are at
most k2+∆(Γ)+2. As the sum of degrees of vertices of Γ is equal to 2|E(Γ)|, |E(Γ)| ≤
1
2
∆(Γ)|V (Γ)|. Hence, |V (Γ′)| ≤ 1

2
((k2 +∆(Γ)+ 1)∆(Γ)+ 2k1 +4)|V (Γ)|. Given Γ′, one

can uniquely restore Γ as follows. All vertices of Γ′ having degrees at least ∆(Γ)+3 are
the central vertices of the implanted stars. This observation permits to restore all edges
of Γ with their colors. Deleting all vertices of all stars from Γ′ produces a disjoint sum
of |V (Γ)| simple cycles. The number of vertices in each of the cycles determines the
color of the corresponding vertex of Γ. Therefore, two multi-color graphs Γ1 and Γ2 are
isomorphic if and only if the corresponding simple graphs Γ′

1 and Γ′
2 are isomorphic. We

may consider that |V (Γ1)| = |V (Γ2)| = |V | and ∆(Γ1) = ∆(Γ2) = ∆, c1 : V (Γi) −→
{1, 2, . . . , k1} and c2 : E(Γi) −→ {1, 2, . . . , k2} for each i = 1, 2, otherwise Γ1 and Γ2

are not isomorphic. Therefore, isomorphism of Γ1 and Γ2 can be tested in O(f(k2 +
∆+2)(1

2
(∆(k2+∆+1)+2k1+4))c

∗(k2+∆+2)ln(k2+∆+2)|V |c∗(k2+∆+2)ln(k2+∆+2)) time. For
the graphs of magnetic fields, ∆ = k1 = k2 = 3.
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