
Äèíàìè÷åñêèå ñèñòåìû, 2015, òîì 5(33), �1-2, 51�56

MSC 2010: 34C05

Geometry of centers of the polynomial

Cauchy�Riemann systems

V.V. Ivanov

Sobolev Institute of Mathematics, Novosibirsk 630090, Russia.

E-mail: iva@math.nsc.ru

Abstracts. Autonomous polynomial systems satisfying the Cauchy�Riemann conditions on the complex plane

are studied. Every of them is de�ned by one complex polynomial. For the fourth degree polynomials whose

roots are centers, we prove that they are simple; moreover, either all of them lie on a straight line or three of

them form an acute triangle and the fourth root is located at the intersection of its altitudes.
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1. Centers of the Cauchy�Riemann systems

We study the dynamics on the Euclidean plane generated by a vector �eld whose
coordinates satisfy the Cauchy�Riemann conditions. The corresponding autonomous system
can be written in a compact form:

ż = f(z), (1)

where f(z) is an analytical function of a complex variable z. It is clear that such systems have
many speci�c features. For example, if at stationary point z0 the polynomial resolution of the
function f(z) starts with the monomial A (z − z0)

k, then the phase portrait of the system
around point z0 is completely determined by the complex coe�cient A and natural number
k. All possible portraits are presented in our �rst �gure, though there are good reasons to
believe that complete classi�cation of all local phase portraits around stationary points of
autonomous Cauchy�Riemann systems was well known even by the classics of distant times,
when the foundations of the potential theory had been arising, as can be seen, for example,
in [3, 4].

Ðèñ. 1. Stationary points of the Cauchy�Riemann systems

More precisely, if k ≥ 2 we see a symmetrical rosette of 2(k − 1) sectors bounded by
separatrices, that in turn go out of stationary point and come back to it. When k = 1 for
simple stationary point there are three cases. If the real part of the derivative f ′(z0) = A
is di�erent from zero, we usually get a focus, but if the imaginary part of the coe�cient A
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is absent, we see a �radiant� node, although experts tend to call it �proper� node. From the
point of view of the problem, which this article is devoted to, we are especially interested
in the remaining case � the real part of A is zero, the imaginary part is nonzero. We have
already seen that only in this case an analytical system can have a center. It is important
to emphasize that the reverse is true too: when only this simple condition holds, point z0 is
really a center. So, an analytical system has a center at a stationary point if and only if the

derivative of the �eld at this point is an imaginary number di�erent from zero.
However, this is well-known [1, 2, 5] and obvious at the same time. Indeed, assuming for

convenience f(0) = 0 and f ′(0) = i, if the reader does not confuse branches of logarithm, it
can be noted that

Ψ(z) :=

∫
dz

f(z)
=

∫
dz

iz +O(z2)
=

∫
1 +O(z)

iz
dz =

ln z

i
+O(z) + const.

Let a nonzero solution z = z(t) to our equation at the moment t = t0 be so close to zero
that it has survived until the moment t = t0 + 2π and all that time it has never left the
neighborhood of zero, where function Φ(z) is de�ned. We prove that z(t0 + 2π) = z(t0).

Since Ψ̇(z(t)) ≡ 1, it turns out that iΨ(z(t)) = it plus a constant, and therefore, when
z = z(t) the function of the form w := zeiO(z) is proportional to the exponent eit. It is easy to
see that w = z +O(z2), so z is explicitly expressed by the periodic function w. In particular,
z(t0 + 2π) coincides with the initial value z(t0).

2. Elementary proof

Quite easy to prove the same thing without addressing to multi-valued logarithms. As
above, we assume that f(0) = 0 and f ′(0) = i. Therefore,

f(z) = iz +O(z2)

as z → 0, where hereafter symbols O(zk) mean power series that begin no earlier than with
degree k. Since the di�erence

1

f(z)
− 1

iz
,

obviously, does not have singularities at zero, there is one-valued analytical function Φ(z)
around zero, for which

Φ′(z) =
1

f(z)
− 1

iz
, Φ(0) = 0. (2)

Greater interest to us is the function

w = w(z) = zeiΦ(z), (3)

Di�erentiating it and considering (2) we come to conclusion:

w′(z) = eiΦ(z)

[
1 + iz

(
1

f(z)
− 1

iz

)]
=

iw(z)

f(z)
.

Let z = z(t) be a solution to (1) which at some point t = t0 is so close to zero that not
only it has survived until the moment t = t0 + 2π, but during this period of time it has not
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left the domain of the function Φ, and so the function w. We need to prove that z(t0 + 2π)
coincides with z(t0). However,

dw(z(t))

dt
= w′(z(t))ż(t) = iw(z(t)).

Thus, the function w(z(t)) is proportional to the exponent eit, and therefore it has the period
2π. It remains to note, considering (2) and (3), that

w = w(z) = z(1 +O(z)) = z +O(z2),

hence, by the theorem on the inverse function it follows that around zero

z = z(w) = w +O(w2).

It is important that the solution z(t) to (1) is explicitly expressed by the periodic function
w(z(t)). Thus, z(t0 + 2π) = z(t0).

3. Dynamically central con�gurations

Now we can proceed to the question, which this article is actually devoted to. Imagine that
on the complex plane we set a �nite number of points. We are interested in for what mutual
arrangement of these points there exists a polynomial autonomous Cauchy�Riemann system
for which only they are its stationary points, and moreover, centers. Such con�gurations
of points we call dynamically central, although we can forget about the dynamics, since
our question, as we have just seen, has purely algebraic character: how polynomials with

imaginary nonzero derivatives in their roots are constructed? It is convenient for us to talk
about polynomials with the highest coe�cient equal to one. However, transition to such
polynomials is associated with multiplication by a complex number. This operation maintains
the roots of the polynomial, but it can fundamentally change it as a vector �eld and its
appropriate dynamics, because it leads not only to the dilatation that only changes the scale,
but also to the rotation that changes the phase portrait beyond recognition. But we have
already managed to forget about �elds and dynamics. It is important for us that quotients
of derivatives of the polynomial in its roots maintain. If all these derivatives are imaginary,
then they remain real proportional, since the rotation only transfer them from the imaginary
axis to another straight line passing through zero. This straight line we call homogeneous line,
and the polynomial whose derivatives in its roots are di�erent from zero and all lie on the
common homogeneous line we call dynamically homogeneous polynomial. It is clear that this
property of the polynomial do not dependent on its highest coe�cient.

Summing up our preparatory conversation, we can notice that the polynomial is

dynamically homogeneous if and only if a set of its the roots is dynamically central. Thus,
our aim is to describe all dynamically homogeneous polynomials. In our opinion, it is beautiful
and probably di�cult problem. Anyway, starting with four points it can hardly be considered
as trivial...

4. Con�gurations of three centers

Linear polynomials are dynamically homogeneous for obvious reason. Each quadratic
polynomial with simple roots is also homogeneous, since its derivatives calculated in two
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its roots di�er only in sign, and therefore they are on the common homogeneous line. After
multiplying it on an appropriate complex number the corresponding system will have two
centers. Starting with the third degree of the polynomial we begin to feel some prohibitions
for the con�gurations we interested in. Let

p(z) = (z − z1)(z − z2)(z − z3).

The derivatives of the polynomial have the form

p ′(z1) = (z1 − z2)(z1 − z3),
p ′(z2) = (z2 − z1)(z2 − z3),
p ′(z3) = (z3 − z1)(z3 − z2).

We suppose that all the roots are di�erent. Therefore, we can divide:

p ′(z2)

p ′(z1)
= −z2 − z3

z1 − z3
,

p ′(z3)

p ′(z1)
= −z3 − z2

z1 − z2
.

If one of the fractions is real, then all three roots lie on the same straight line. Herewith,
the other fractions are real too. Conversely, if the roots lie on the same straight line, then
all the quotients of derivatives are real. As we can see, the polynomial of the third degree

is dynamically homogeneous if and only if all its three roots lie on the same straight line.
Dynamical interpretation of our observation is the following: cubic Cauchy�Riemann system
can have three centers only in the case when its stationary points are simple and lie on the
same straight line. For now it is the only form of coexistence of centers.

5. Con�gurations of four centers

Polynomials of the fourth degree are notably more interesting. Now we will see that there
appears another variant of the mutual arrangement of cycles.

Ðèñ. 2. Dynamically central con�gurations

Theorem. If the polynomial of the fourth degree has four di�erent roots and the derivatives

in them are real proportional, then there are two variants � either all of them lie on the same

straight line or three of them form an acute triangle and a point of the intersection of its

altitudes is the place for the fourth root. Conversely, if the roots are arranged as described

above, then the derivatives are real proportional.

We deliberately do not use our terminology in order to simplify the perception of the
theorem for the reader. But it can be said in other words: four complex points are dynamically

ISSN 0203�3755 Äèíàìè÷åñêèå ñèñòåìû, 2015, òîì 5(33), �1-2



GEOMETRY OF CENTERS OF THE POLYNOMIAL CAUCHY�RIEMANN SYSTEMS 55

central if and only if all of them lie on the same straight line or they form the con�guration

of the triangle vertices and the intersection point of its altitudes. In our second �gure in
symbolized form there represented all dynamically central con�gurations which are possible
for polynomials of degrees not greater than four.

Proof. If all four roots of the polynomial

p(z) = (z − z1)(z − z2)(z − z3)(z − z4)

are di�erent, than its derivatives

p ′(z1) = (z1 − z2)(z1 − z3)(z1 − z4),
p ′(z2) = (z2 − z1)(z2 − z3)(z2 − z4),
p ′(z3) = (z3 − z1)(z3 − z2)(z3 − z4),
p ′(z4) = (z4 − z1)(z4 − z2)(z4 − z3)

are nonzero. We can note that it is useful to calculate their pairwise sums. For example,

p ′(z1) + p ′(z2) = (z1 − z2)
2(z1 + z2 − z3 − z4),

p ′(z1) + p ′(z3) = (z1 − z3)
2(z1 − z2 + z3 − z4),

p ′(z1) + p ′(z4) = (z1 − z4)
2(z1 − z2 − z3 + z4).

We multiply, say, the second and the third of the last expressions and divide the result by the
square of the �rst of the previous four expressions:[

1 +
p ′(z3)

p ′(z1)

] [
1 +

p ′(z4)

p ′(z1)

]
= 1−

[
z3 − z4
z1 − z2

]2
.

We could come to this formula by using a more �direct� way, but how to guess in advance
that we obtain such an expression. If both fractions on the left are real, than the square of
the fraction on the right is real too, so the fraction is either real or imaginary. In the �rst case
vectors z1 − z2 and z3 − z4 are collinear, in the second case they are orthogonal. It is clear
that for all other splits into pairs of four points the conclusions are the same. Hence, there
implies what we stated.

Indeed, imagine that on the plane there are four di�erent points. Let their con�guration
is such that the line passing through any two of them either collinear or orthogonal to the
line passing through a pair of other points. If any three points lie on a straight line, then the
fourth point lies on it too. If three points form a triangle, then each of three lines passing
through the fourth point and one of its vertices must be orthogonal to the opposite side. If
our triangle is not right-angled, then its altitudes intersect in the fourth point. If it has an
obtuse angle, then we replace its vertex by the fourth point. We obtain an acute triangle and
the point that we have excluded now is the intersection point of its altitudes.

However, if one angle is right, then the situation is a little unusual. The fact is that the
vertex of this angle is the intersection point of the altitudes of our triangle. Where can the
fourth point be? How to agree its presence with the con�guration that we are now discussing?
Of course, one of the vertices formally could be a twofold stationary point, but it was excluded.
But then the hypotenuse must be orthogonal to a segment connecting the fourth point and
the vertex of the right angle. Then the segments connecting the fourth point with the vertices
of acute angles should be parallel to legs that are opposite to these vertices. We come to
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an indisputable conclusion � legs are equal and the fourth point together with its three
companions represent vertices of a square! To make the �calculation� easier we move its center
to the origin, rotate it so that the vertices appear on the real and imaginary axes, and compress
or stretch it, if necessary, so that its vertices become ±1 and ±i. So we get the polynomial
p(z) = z4−1 whose derivatives p ′(z) = 4z3 in its roots are equal to ±4 or ∓4i and are not real
proportional. In short, the right angle does not occur in the dynamically central con�gurations
of four points.

The proof of the inverse statement may serve as a reward for the reasoning experienced
above. If the roots, no matter how many, lie on the same straight line, the quotients of the
derivatives can be represented as quotients of equal number of collinear di�erences of these
roots, and therefore, are real. For four points which do not lie on the same straight line we
have the �triangular� variant. We calculate the quotients of the derivatives. For example,

p ′(z2)

p ′(z1)
=

(z2 − z1)(z2 − z3)(z2 − z4)

(z1 − z2)(z1 − z3)(z1 − z4)
= −z2 − z3

z1 − z4

z2 − z4
z1 − z3

.

In each fraction on the right there exist all four points, which means that the numerator and
denominator as vectors are orthogonal, but as complex numbers are di�er by an imaginary
multiplier, so the product of these fractions is real. The same thing takes place for other pairs
of roots. Theorem is proved.

It would be exceptionally interesting to know all the con�guration of centers for n ≥ 5. It
is not excluded that there exists interesting combinatorics, and full and �nal answer depends
on the arithmetic structure of n. We only emphasize that for any n ≥ 4 there always exist
at least two variants � all the roots of the polynomial p are simple and lie on the same
straight line, and �a representative� of another variant may be, for example, the polynomial
p(z) = z(zn−1 − 1). Just multiplying by a suitable complex number from central Cauchy�
Riemann system we easily obtain a system of the same class for which all stationary points
are nodes! By the way, in the last example all stationary points are nodes too. To convert them
into centers we need only to replace the polynomial p(z) by ip(z). Without any di�culties
we could draw full phase portraits for all mentioned examples of autonomous systems on an
�extended� complex plane. The pictures are very beautiful and the author hopes that the
reader will get a lot of pleasure when he draw them by himself...
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