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1. Introduction

Problems on stability of solutions to autonomous delay di�erential equations are studied
well (for instance, see [1, 2, 11, 12, 15, 16, 17, 18, 19, 21] and the bibliography therein).
However, there are much less results on the stability theory for nonautonomous delay
equations. The main investigations for nonautonomous equations focus on linear delay
di�erential equations with periodic coe�cients

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ), A(t+ T ) ≡ A(t), B(t+ T ) ≡ B(t), t > 0. (1.1)

The fundamentals of the stability theory of solutions to these equations were laid in the
papers [13, 14, 22, 23] and others. One of the main approaches when studying stability of
solutions to (1.1) is the development of the Floquet theory and the use of the monodromy
operator. This approach is also applied when studying stability of solutions to linear equations
of neutral type with periodic coe�cients

d

dt
(y(t) +Dy(t− τ)) = A(t)y(t) +B(t)y(t− τ), t > 0. (1.2)

To study asymptotic stability of the zero solution to the time-delay systems (1.1) and
(1.2), the authors in [5, 6, 7, 9] proposed to use Lyapunov�Krasovskii functionals of the form

V (t, y) = ⟨H(t)(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))⟩+
t∫

t−τ

⟨K(t− s)y(s), y(s)⟩ ds. (1.3)

In particular, the following result was established in [9].

1The work is supported in part by the Russian Foundation for Basic Research (project no. 13-01-00329).
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Theorem 1. Suppose that there exist matrices H(t) = H∗(t) ∈ C1[0, T ], K(s) = K∗(s) ∈
C1[0, τ ] such that

H(0) = H(T ) > 0, K(s) > 0,
d

ds
K(s) < 0, s ∈ [0, τ ],

and the matrix

C(t) =

(
C11(t) C12(t)
C∗
12(t) C22(t)

)
(1.4)

with

C11(t) = − d

dt
H(t)−H(t)A(t)−A∗(t)H(t)−K(0),

C12(t) = − d

dt
H(t)D −H(t)B(t)−A∗(t)H(t)D,

C22(t) = −D∗ d

dt
H(t)D −D∗H(t)B(t)−B∗(t)H(t)D +K(τ)

is positive de�nite for t ∈ [0, T ]. Then the zero solution to (1.2) is exponentially stable.

Using functionals of the form (1.3), the authors in [5, 6, 9] obtained �rst analogues of
M.G.Krein's estimates [3] characterizing exponential decay of solutions to (1.1) and (1.2) as
t → ∞. In the case of ordinary di�erential equations with periodic coe�cients (D ≡ B(t) ≡ 0),
�rst estimates of such kind were obtained in [4].

In the present paper we use the Lyapunov�Krasovskii functional (1.3) in order to study
stability of the zero solution to the system of nonlinear delay di�erential equations

d

dt
(y(t) +Dy(t− τ)) = A(t)y(t) +B(t)y(t− τ) + F (t, y(t), y(t− τ)), t > 0, (1.5)

where D is a constant (n × n)-matrix, A(t), B(t) are (n × n)-matrices with continuous
T -periodic entries, τ > 0 is the time delay, and F (t, u, v) is a continuous vector function
satisfying the inequality

∥F (t, u, v)∥ ≤ q1∥u∥+ q2∥v∥, q1, q2 ≥ 0 are constant. (1.6)

Our aim is to establish conditions of exponential stability and to obtain estimates characteriz-
ing exponential decay of solutions to (1.5) at in�nity. This paper continues our investigations
of nonlinear time-delay systems [8, 10, 20]. Some examples illustrating e�ectiveness of our
approach are given in [10].

2. Main results

Supposing that the conditions of Theorem 1 are satis�ed, we formulate our main results
in this section. Using the matrices H(t) and K(s), introduce the following notation

S(t) =

(
S11(t) S12(t)
S∗
12(t) S22(t)

)
, (2.1)

S11(t) = − d

dt
H(t)−H(t)A(t)−A∗(t)H(t)−K(0),
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EXPONENTIAL STABILITY OF SOLUTIONS 5

S12(t) = H(t)A(t)D +K(0)D(t)−H(t)B(t), S22(t) = K(τ)−D∗K(0)D,

q(t) =

(
q1 +

√
q21 + (q1∥D∥+ q2)2

)
∥H(t)∥. (2.2)

Here and thereafter we use the spectral norm of matrices. It is not hard to verify that S(t)
is positive de�nite if and only if C(t) in (1.4) is positive de�nite (see Section 3 for details).
Denote by I the unit matrix.

Theorem 2. Let the conditions of Theorem 1 be satis�ed. Suppose that q1, q2 are such that

the matrix (S(t) − q(t)I) is positive de�nite for t ∈ [0, T ]. Then the zero solution to (1.5) is

exponentially stable.

Consider the initial value problem for (1.5)

d

dt
(y(t) +Dy(t− τ)) = A(t)y(t) +B(t)y(t− τ) + F (t, y(t), y(t− τ)), t > 0,

y(t) = φ(t), t ∈ [−τ, 0],

y(+0) = φ(0),

(2.3)

where φ(t) ∈ C1[−τ, 0] is a given vector function. Below we establish estimates of solutions
to the initial value problem (2.3) characterizing the rate of exponential decay as t → ∞.

To formulate our results, we introduce some notations. If the matrix H(t) satis�es the
conditions of Theorem 1 then

d

dt
H(t) +H(t)A(t) +A∗(t)H(t) < −K(0).

It follows from the authors' results in [4] that H(t) > 0 on [0, T ]. We extend T -periodically
the matrix H(t) to the whole half-axis {t > 0}, keeping the same notation. Using this matrix
H(t) and the matrix K(s), satisfying the conditions of Theorem 1, we consider the functional
(1.3) and put

V0(φ) = ⟨H(0)(φ(0) +Dφ(−τ)), (φ(0) +Dφ(−τ))⟩+
0∫

−τ

⟨K(−s)φ(s), φ(s)⟩ds. (2.4)

We introduce

P (t) = − d

dt
H(t)−H(t)A(t)−A∗(t)H(t)−K(0)− q(t)I

− (H(t)A(t)D +K(0)D −H(t)B(t))[K(τ)−D∗K(0)D − q(t)I]−1

× (H(t)A(t)D +K(0)D −H(t)B(t))∗. (2.5)

Note that P (t) is positive de�nite if the matrix (S(t)−q(t)I) is positive de�nite (see Section 3
for details). Denote by pmin(t) > 0 the minimal eigenvalue of P (t) and by hmin(t) > 0 the
minimal eigenvalue of H(t). Let k > 0 be the maximal number such that

d

ds
K(s) + kK(s) ≤ 0, s ∈ [0, τ ]. (2.6)
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We put
γ(t) = min {pmin(t), k∥H(t)∥} , (2.7)

Φ = max
t∈[−τ,0]

∥φ(t)∥, α = max
t∈[0,T ]

√
V0(φ)

hmin(t)
,

β(t) =
γ(t)

2∥H(t)∥
, β+ = max

t∈[0,T ]
β(t), β− = min

t∈[0,T ]
β(t).

(2.8)

Analogy as in [9], we distinguish three cases when obtaining estimates. It is not hard to
show that the spectrum of the matrix D belongs to the unit disk {λ ∈ C : |λ| < 1} if the
conditions of Theorem 1 are ful�lled; i.e., if the matrix C(t) (or S(t)) is positive de�nite.
Consequently, ∥Dj∥ → 0 as j → ∞. Let l > 0 be the minimal integer such that ∥Dl∥ < 1.

Theorem 3. Let the conditions of Theorem 2 be satis�ed.

I. If ∥Dl∥ < e−lβ+τ then a solution to the initial value problem (2.3) satis�es the estimate

∥y(t)∥ ≤

[
α
(
1− ∥Dl∥elβ+τ

)−1
l−1∑
j=0

∥Dj∥ejβ+τ

+max
{
∥D∥eβ+τ , . . . , ∥Dl∥elβ+τ

}
Φ

]
e
−

t∫
0

β(ξ) dξ
, t > 0.

II. If e−lβ+τ ≤ ∥Dl∥ ≤ e−lβ−τ then a solution to the initial value problem (2.3) satis�es

the estimate

∥y(t)∥ ≤

[
α

(
1 +

t

lτ

) l−1∑
j=0

∥Dj∥ejβ+τ

+max
{
1, ∥D∥eβ+τ , . . . , ∥Dl−1∥e(l−1)β+τ

}
Φ

]
e
−

t∫
0

β̃(ξ) dξ
, t > 0.

III. If e−lβ−τ < ∥Dl∥ < 1 then a solution to the initial value problem (2.3) satis�es the

estimate

∥y(t)∥ ≤

[
α∥Dl∥elβ−τ

(
∥Dl∥elβ−τ − 1

)−1
l−1∑
j=0

∥Dj∥ejβ−τ

+ ∥Dl∥
1
l
−1max

{
1, ∥D∥, . . . , ∥Dl−1∥

}
Φ

]
exp

(
t

lτ
ln ∥Dl∥

)
, t > 0.

Here α, β(t), β+, β−, and Φ are de�ned in (2.8), β̃(t) = min

{
β(t), − 1

lτ
ln ∥Dl∥

}
> 0.

We prove Theorem 3 in Section 3. Obviously, Theorem 2 immediately follows from this
theorem.

3. Proof of the main results

To prove Theorem 3 we need auxiliary results obtained below.
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EXPONENTIAL STABILITY OF SOLUTIONS 7

Lemma 1. Let the conditions of Theorem 2 be satis�ed. Then, for a solution to the initial

value problem (2.3), the following inequality holds

∥y(t) +Dy(t− τ)∥ ≤

√
V0(φ)

hmin(t)
exp

−
t∫

0

γ(ξ)

2∥H(ξ)∥
dξ

 , t > 0, (3.1)

where V0(φ) and γ(t) are de�ned by (2.4) and (2.7), respectively, hmin(t) > 0 is the minimal

eigenvalue of the matrix H(t).

Proof. We follow the strategy in [5]. Let y(t) be a solution to the initial value problem (2.3).
Using the above matrices H(t) and K(s), we consider the Lyapunov�Krasovskii functional
(1.3) on this solution. Using the matrix C(t) de�ned in (1.4), the time derivative of this
functional can be written as follows

d

dt
V (t, y) ≡ −

⟨
C(t)

(
y(t)

y(t− τ)

)
,

(
y(t)

y(t− τ)

)⟩
+ ⟨H(t)F (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))⟩
+ ⟨H(t)(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))⟩

+

t∫
t−τ

⟨
d

dt
K(t− s)y(s), y(s)

⟩
ds. (3.2)

Consider the �rst summand in the right-hand side of (3.2). Since(
y(t)

y(t− τ)

)
=

(
I −D
0 I

)(
y(t) +Dy(t− τ)

y(t− τ)

)
then⟨

C(t)

(
y(t)

y(t− τ)

)
,

(
y(t)

y(t− τ)

)⟩
≡

⟨
S(t)

(
y(t) +Dy(t− τ)

y(t− τ)

)
,

(
y(t) +Dy(t− τ)

y(t− τ)

)⟩
,

where the matrix S(t) is de�ned in (2.1). Obviously, if the matrix C(t) is positive de�nite
then the matrix S(t) is positive de�nite as well.

Now we consider the second and the third summands in the right-hand side of (3.2). In
view of (1.6) we have

⟨H(t)F (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))⟩+ ⟨H(t)(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))⟩
≤ 2∥H(t)∥

(
q1∥y(t)∥+ q2∥y(t− τ)∥

)
∥y(t) +Dy(t− τ)∥

≤ 2q1∥H(t)∥∥y(t) +Dy(t− τ)∥2 + 2(q1∥D∥+ q2)∥H∥∥y(t− τ)∥∥y(t) +Dy(t− τ)∥
≤ q(t)

(
∥y(t) +Dy(t− τ)∥2 + ∥y(t− τ)∥2

)
,

where q(t) is given in (2.2).
Hence,

−
⟨
C(t)

(
y(t)

y(t− τ)

)
,

(
y(t)

y(t− τ)

)⟩
+ ⟨H(t)F (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))⟩+ ⟨H(t)(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))⟩

≤ −
⟨
(S(t)− q(t)I)

(
y(t) +Dy(t− τ)

y(t− τ)

)
,

(
y(t) +Dy(t− τ)

y(t− τ)

)⟩
. (3.3)
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By the conditions of Theorem 2, the matrix (S(t) − q(t)I) is positive de�nite. Using the
representation

S(t)− q(t)I =

(
I S12(t)(S22(t)− q(t)I)−1

0 I

)
×
(

S11(t)− q(t)I − S12(t)(S22(t)− q(t)I)−1S∗
12(t) 0

0 S22(t)− q(t)I

)
×
(

I 0
(S22(t)− q(t)I)−1S∗

12(t) I

)
,

we have⟨
(S(t)− q(t)I)

(
y(t) +Dy(t− τ)

y(t− τ)

)
,

(
y(t) +Dy(t− τ)

y(t− τ)

)⟩
≥

⟨[
S11(t)− q(t)I − S12(t)(S22(t)− q(t)I)−1S∗

12(t)
]
(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))

⟩
.

Since the matrix (S(t)− q(t)I) is positive de�nite then the matrix

P (t) = S11(t)− q(t)I − S12(t)(S22(t)− q(t)I)−1S∗
12(t)

is positive de�nite. Taking into account (2.1), the matrix P (t) has the form (2.5). Consequent-
ly, from (3.3) we derive

−
⟨
C(t)

(
y(t)

y(t− τ)

)
,

(
y(t)

y(t− τ)

)⟩
+ ⟨H(t)F (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))⟩
+ ⟨H(t)(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))⟩
≤ − ⟨P (t)(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))⟩

≤ −pmin(t)∥y(t) +Dy(t− τ)∥2, (3.4)

where pmin(t) > 0 is the minimal eigenvalue of P (t). Using the matrix H(t), we have

hmin(t) ∥y(t) +Dy(t− τ)∥2 ≤ ⟨H(t)(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))⟩
≤ ∥H(t)∥ ∥y(t) +Dy(t− τ)∥2,

where hmin(t) > 0 is the minimal eigenvalue of H(t). Using (2.6) and (3.4), from (3.2) we
derive

d

dt
V (t, y) ≤ −pmin(t)

∥H(t)∥
⟨H(t)(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))⟩

− k

t∫
t−τ

⟨K(t− s)y(s), y(s)⟩ ds.

Taking into account the de�nition of the functional (1.3), we obtain

d

dt
V (t, y) ≤ − γ(t)

∥H(t)∥
V (t, y),
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where γ(t) is de�ned by (2.7). From this di�erential inequality we derive the estimate

V (t, y) ≤ V0(φ) exp

−
t∫

0

γ(ξ)

∥H(ξ)∥
dξ

 .

Then, using the de�nition of the functional (1.3), we have

∥y(t) +Dy(t− τ)∥ ≤

√
V (t, y)

hmin(t)
≤

√
V0(φ)

hmin(t)
exp

−
t∫

0

γ(ξ)

2∥H(ξ)∥
dξ

 .

The lemma is proved.

Lemma 2. Let the conditions of Theorem 2 be satis�ed. Then a solution to the initial value

problem (2.3) on every segment t ∈ [kτ, (k+1)τ), k = 0, 1, . . . , satis�es the following estimate

∥y(t)∥ ≤ α
k∑

j=0

∥Dj∥e
−

t−jτ∫
0

β(ξ) dξ
+ ∥Dk+1∥Φ, (3.5)

where α, β(t), and Φ are de�ned in (2.8).

Proof. By Lemma 1, a solution to the initial value problem (2.3) satis�es (3.1). In view of the
notations (2.8), the estimate has the form

∥y(t) +Dy(t− τ)∥ ≤ αe
−

t∫
0

β(ξ) dξ
, t > 0. (3.6)

Obviously, for t ∈ [0, τ) we have the inequality

∥y(t)∥ ≤ αe
−

t∫
0

β(ξ) dξ
+ ∥Dy(t− τ)∥ ≤ αe

−
t∫
0

β(ξ) dξ
+ ∥D∥Φ,

which gives us (3.5) for k = 0.
Let t ∈ [kτ, (k+1)τ), k = 1, 2 . . . . It is not hard to write out the sequence of the inequalities

∥y(t)∥ ≤ αe
−

t∫
0

β(ξ) dξ
+ ∥Dy(t− τ)∥

≤ αe
−

t∫
0

β(ξ) dξ
+ ∥Dy(t− τ) +D2y(t− 2τ)∥+ ∥D2y(t− 2τ) +D3y(t− 3τ)∥+ . . .

+ ∥Dky(t− kτ) +Dk+1y(t− (k + 1)τ)∥+ ∥Dk+1y(t− (k + 1)τ)∥

≤ αe
−

t∫
0

β(ξ) dξ
+ ∥D∥ ∥y(t− τ) +Dy(t− 2τ)∥+ ∥D2∥ ∥y(t− 2τ) +Dy(t− 3τ)∥+ . . .

+ ∥Dk∥ ∥y(t− kτ) +Dy(t− (k + 1)τ)∥+ ∥Dk+1∥ ∥y(t− (k + 1)τ)∥.

By (3.6) we derive the estimate

∥y(t)∥ ≤ αe
−

t∫
0

β(ξ) dξ
+ α∥D∥e

−
t−τ∫
0

β(ξ) dξ
+ α∥D2∥e

−
t−2τ∫
0

β(ξ) dξ
+ . . .

+ α∥Dk∥e
−

t−kτ∫
0

β(ξ) dξ
+ ∥Dk+1∥Φ,

ISSN 0203�3755 Äèíàìè÷åñêèå ñèñòåìû, 2015, òîì 5(33), �1-2



10 G.V.DEMIDENKO, I. I.MATVEEVA

which implies (3.5).

The lemma is proved.

Proof of Theorem 3. For the linear time-delay system (1.2) with periodic coe�cients, the
analogues of Theorem 3 (see Theorems 2�4 in [9]) were proved in detail in [9] by the use of
the auxiliary assertions (see Lemmas 2�4 in [9]). In the present paper, using Lemmas 1, 2 and
repeating the reasoning carried out when proving Theorems 2�4 in [9], we derive the required
estimates for solutions to the initial value problem (2.3).

Using the proof of Theorem 2, we can reformulate the conditions of exponential stability
of the zero solution to the nonlinear system (1.5) as follows.

Theorem 4. Suppose that there exist matrices

H(t) = H∗(t) ∈ C1[0, T ], H(0) = H(T ) > 0,

K(s) = K∗(s) ∈ C1[0, τ ], K(s) > 0,
d

ds
K(s) < 0, s ∈ [0, τ ],

such that the matrices (K(τ)−D∗K(0)D−q(t)I) and P (t) de�ned by (2.5) are positive de�nite
for t ∈ [0, T ]. Then the zero solution to (1.5) is exponentially stable.

Remark 1. Taking into account the form of P (t), we see that the conditions of exponential
stability can be formulated in terms of the linear matrix inequality and the di�erential matrix
inequality of Riccati type.

Remark 2. Theorem 3 makes it possible to estimate the rate of exponential decay of solutions
to (2.3) at in�nity; moreover, all the values characterizing the decay rate are obtained in
explicit form.
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