УДК 539.3

Дифракция Фраунгофера от цилиндрического источника упругих волн

А.Р.Сницер

Таврический национальный университет им. В.И.Вернадского, НИИ Проблем геодинамики. Симферополь 95007. E-mail: snitser arnold@yahoo.com

Аннотация. В статье, на основе аналитического решения задачи излучения, приведены результаты расчетов дальнего поля радиальных перемещений, вызванных цилиндрическим источником упругих волн. Показано, что волновое поле в дальней зоне совпадает с дифракционной картиной источника плоских волн, определяемой теорией дифракции Фраунгофера.

Ключевые слова: цилиндрический излучатель, упругие волны, диаграмма направленности, дифракция Фраунгофера, дифракционная картина

1. Введение

Волновое поле цилиндрического излучателя в упругой среде представляет суперпозицию продольных и поперечных волн [1,2]. Если излучатель моделировать нормальными гармоническими колебаниями кольцевой области на поверхности бесконечной свободной от напряжений цилиндрической полости, то возникают также волны Био [1,3]. Мы здесь проведем анализ дальнего волнового поля для указанной модели источника с точки зрения общей теории волновых процессов.

В случае сосредоточенного по окружности воздействия на поверхность цилиндрической полости, возникает интегральная суперпозиция P- и S-волн, которые лишь в дальней зоне в ортогональной системе координат, подобной сферической, удается разделить. При этом окружные перемещения U_{θ} соответствуют S-волнам, а радиальные $U_R - P$ -волнам [1,4]. Как показывает аналитическое исследование поля перемещений при высоте кольцевой области нагружения отличной от нуля, к структуре поля сосредоточенного воздействия добавляется еще одна составляющая радиального перемещения. Эта добавочная составляющая представляет собой отдельную продольную волну P_{orig} , которая распространяется в полосе примыкающей по нормали к кольцевой области нагружения полости. При этом высота указанной полосы равна высоте поверхности цилиндрического источника. Таким образом, дальнее поле продольных упругих волн рассмотренного цилиндрического го излучателя слагается из волны P_{orig} , существующей только в области $|z| \leq h$ или $0 < |\vartheta| \leq \arcsin(h/R)$ (область кольцевой полосы), и волны P_{sep} — волны¹ в области |z| > h (вне области кольцевой полосы).

© А. Р. СНИЦЕР

¹Продольная волна, аналитически выделенная в дальней зоне из интегральной суперпозиции неразделимых *P*- и *S*-волн.

А. Р. СНИЦЕР

2. Выражения для модулей радиальных перемещений в дальней зоне и численные результаты

Как следует из результатов полученных в работах [1,2], выражения для модулей радиальных перемещений в дальней зоне можно представить в виде:

$$|U_R(R_0,\vartheta)| \sim \begin{cases} \left| \frac{\sin\Phi}{\Phi} \frac{f(\Omega,\vartheta,k)}{F(\vartheta)} \right|_{\vartheta=\vartheta_m} \times F(\vartheta), & 0 \le \vartheta \le \vartheta_m; \\ \left| \frac{\sin\Phi}{\Phi} f(\Omega,\vartheta,k) \right|, & \vartheta > \vartheta_m. \end{cases}$$
(1)

где

$$f(\Omega,\vartheta,k) = \frac{k^2 - 2\sin^2\vartheta}{|\Delta| \sin\vartheta\sqrt{R_0\cos\vartheta(1 + R_0\cos\vartheta)} \left|H_1^{(2)}(\Omega k^{-1}\cos\vartheta)\right|},\tag{2}$$

$$F(\vartheta) = 2\sqrt{2/\pi} \cos\vartheta \left(1 + R_0 \cos\vartheta\right)^{-1/2} \left| 2H_1^{(2)}(\Omega k^{-1}) - k\Omega H_0^{(2)}(\Omega k^{-1}) \right|^{-1}, \quad (3)$$

$$\Delta = \Delta_1 + \Delta_2, \quad \Delta_1 = -4x \, k^{-1} \sin \vartheta \, \mathcal{H} \, (\Omega \, x) + 2k (\Omega \sin \vartheta)^{-1},$$

$$\Delta_2 = -(2 \sin^2 \vartheta - k^2)^2 \mathcal{H} \, (\Omega k^{-1} \cos \vartheta) / k^2 \sin \vartheta \cos \vartheta \,, \tag{4}$$

$$x = x(k, \vartheta) = \sqrt{1 - k^{-2} \sin^2 \vartheta}, \quad \mathcal{H}(z) = H_0^{(2)}(z) / H_1^{(2)}(z), \tag{5}$$

$$\Phi = \Omega H k^{-1} \sin \vartheta, \quad \vartheta_m = \arcsin(H/R_0). \tag{6}$$

Здесь $k = k_2/k_1 = \sqrt{(1-\nu)/(0.5-\nu)}$ — отношение волновых чисел поперечных и продольных упругих волн; ν — коэффициент Пуассона; $\Omega = k_2 a$ — безразмерная частота, характеризующая волновой размер полости; 2H = 2h/a — относительная высота кольца нагружения полости; $\varepsilon = a/R$ — параметр «дальности» точки наблюдения $M(R_0, \varphi, \vartheta)$ волнового поля; $R_0 = R/a$ — относительное расстояние от источника до точки наблюдения; a — радиус полости; R, ϑ — координаты ортогональной системы (R, φ, ϑ) , связанной с цилиндрическими координатами (r, φ, z) соотношениями: $r = a + R \cos \vartheta$, $z = R \sin \vartheta$.

Приближение дальнего поля источника для точек наблюдения $M(R, \vartheta)$ определяется в нашем случае соотношением $R\lambda_1 \ge (2h)^2$ [5]. Из данного соотношения находим предельный линейный размер источника, ниже которого наблюдается дифракция (расхождение) плоского пучка упругих волн в полосе $|z| \le h$: $H \le \sqrt{\pi k/2\varepsilon\Omega}$. Так, полагая $\nu = 0.25$, $\varepsilon = 0.005$, $\Omega = 3$, мы получим $H \le 13.47$.

При указанных параметрах, на основе формул (1)–(6), были посчитаны зависимости модуля радиальных перемещений от угла ϑ для различных значений линейного размера источника (ϑ — угол между нормалью к цилиндрической поверхности и направлением от источника к точке наблюдения). Одни и те же результаты расчетов представлены в полярной системе координат (диаграммы направленности, рис.1) и в прямоугольной системе координат (рис.2). Линии 0 соответствуют сосредоточенной нагрузке, линии 1,2 — высоте кольца нагружения H = 3.7 и H = 7 соответственно. Отметим, что оценка главных членов асимптотики дальнего поля окружных волн показывает, что отдельной *S*-волны в области $|z| \leq h$,

Рис. 1. Диаграммы направленности излучения цилиндрического источника упругих волн. Линиям 0,1,2 соответствуют линейные размеры источника: H = 0; 3.7; 7.0. Частота излучения $\Omega = 3$; коэффициент Пуассона $\nu = 0.25$, параметр дальности $\varepsilon = 0.005$. Правая полуплоскость — радиальные компоненты перемещений (*P*-волны), левая полуплоскость — окружные компоненты (*S*-волны).

Рис. 2. Зависимости модуля радиальных перемещений от угла ϑ . Линиям 0,1,2 соответствуют линейные размеры источника: H = 0; 3.7; 7.0. Частота излучения $\Omega = 3$; коэффициент Пуассона $\nu = 0.25$, параметр дальности $\varepsilon = 0.005$.

ISSN 0203-3755 Динамические системы, вып. 28 (2010)

как в случае продольных волн, не возникает [1,2], поэтому интерес представляет анализ вклада продольных волн.

3. Объяснение результатов согласно теории дифракции Фраунгофера

Соотношение вкладов P_{orig} и P_{sep} , как показывают численные расчеты, зависит от волновых размеров радиуса полости и высоты кольца нагружения, т.е. от отношений a/λ_1 и h/λ_1 , где λ_1 — длина продольных волн в упругой среде. Из рис.1 и 2 видно, что несмотря на рост волновой высоты кольца нагружения, т.е. области распространения основного пучка P_{orig} , ширина центрального максимума величины $|U_R|$ уменьшается. Это связано с явлением дифракции, ограничивающим угловой разброс этого пучка, определяемый отношением длины излучаемой волны к линейному размеру источника [2,5]:

$$\Delta \vartheta = \lambda_1 / 2h = \pi k / \Omega H. \tag{7}$$

Представленные на рис.2 зависимости $|U_R|$ от ϑ в дальней зоне, рассчитанные на основе аналитического решения задачи о цилиндрическом излучателе, находят объяснение в теории дифракции. Действительно, полученные результаты совпадают с классическими расчетами дифракции Фраунгофера на щели или с дифракционной картиной углового разброса волнового пучка, ограниченного дифракцией. Распределение амплитуд в таких волновых процессах в терминах принятых здесь обозначений определяется выражением [5]:

$$|U_R| \sim \left| \frac{\sin(\Phi/2)}{\Phi/2} \right|, \quad \Phi = 4\pi \, \frac{h \sin \vartheta}{\lambda_1} = 2\Omega \, H \, k^{-1} \sin \vartheta.$$
 (8)

Из (8) следует, условие максимума $|U_R|$, записанное в терминах принятых нами безразмерных величин:

$$\vartheta_n = \arcsin\left(\alpha_n k/H\Omega\right), \quad n = 1, 2, 3...,$$
(9)

где $\alpha_1 = 0, \ \alpha_2 = 1.43 \pi, \ \alpha_3 = 2.46 \pi, \ \alpha_4 = 3.47 \pi, \ \alpha_5 = 4.48 \pi \dots$ – корни трансцендентного уравнения [6]: $tg(\Phi/2) = \Phi/2, \quad \Phi_n/2 = \alpha_n.$

Из (8) также следует условие равенства нулю амплитуд перемещений:

$$\vartheta_{0n} = \arcsin(n\pi k/\Omega H), \quad n = \pm 1, \pm 2, \pm 3, \dots$$
(10)

Для высоты H = 3.7 формула (9) дает максимумы амплитуд при углах: $\vartheta_1 = 0$, $\vartheta_2 = \pm 0.777$, а нулевые амплитуды согласно (10) будут при углах: $\vartheta_{01} = \pm 0.512$, $\vartheta_{02} = \pm 1.373$. Для H = 7 имеем: $\vartheta_1 = 0$, $\vartheta_2 = \pm 0.38$, $\vartheta_3 = \pm 0.691$, $\vartheta_4 = \pm 1.118$; $\vartheta_{01} = \pm 0.262$, $\vartheta_{02} = \pm 0.545$, $\vartheta_{03} = \pm 0.89$.

Выводы

Значения углов, определяющих максимумы и нулевые значения модуля амплитуд перемещений $|U_R|$, полученные на основе аналитического решения задачи

ISSN 0203–3755 Динамические системы, вып. 28 (2010)

излучения (рис.2), хорошо согласуются с расчетами по классическим формулам (8), (9), (10) дифракции Фраунгофера. При этом величина (7) определяет ширину главного интерференционного максимума. Вторичные максимумы по амплитуде значительно меньше основного, и как следует из формулы (9), при фиксированных параметрах Ω и ν , с уменьшением линейного размера H излучателя их расстояние от основного максимума увеличивается, что означает расширение главного максимума. Этот факт хорошо согласуется с результатами, представленными на рис. 1 и рис. 2. Так при сосредоточенной нагрузке (H = 0) волна P_{orig} исчезает и остается один широкий максимум (линии 0 на рис. 1 и рис. 2).

Список цитируемых источников

- 1. *Сницер А.Р.* Волны при нормальном гармоническом нагружении скважины в упругой среде. І. Структура волнового поля на поверхности скважины и в дальней зоне. // А.Р. Сницер // Динамические системы. 2006. Вып. 20 С.67–88.
- 2. *Сницер А.Р.* Волны при нормальном гармоническом нагружении скважины в упругой среде. II. Энергетические характеристики излучения // А.Р. Сницер // Динамические системы. 2008. Вып. 25 С.103–123.
- 3. Biot M.A. Propagation of Elastic Waves in Cylindrical Bore Containing a Fluid // M.A. Biot // J. Appl. Physics. 1952. Vol.23, No 9. P.997–1005.
- 4. Snitser A.R. Radiation problem of normal stress-loading of bore surface // A.R. Snitser // Proc. Appl. Math. Mech. 2007. Vol.7, Iss.1. P.2040059-2040060.
- 5. *Крауфорд Ф.* Берклеевский курс физики. Волны // Ф. Крауфорд М.: Наука, 1974. Т.3. 528 с.
- 6. Ландсберг Г.С. Оптика // Г.С. Ландсберг М.: Наука, 1976. 928 с.

Получена 10.06.2010