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Abstracts. The classical rectangle formula of calculating integrals is modified to be applicable to L2-functions
by using the method of approximation by families of linear operators. The algorithm of numerical integration
is developed according to the modified formula and its approximation properties dependent on the input
parameters and function to be integrated are evaluated
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Introduction

In this paper we study the classical rectangle formula with randomly shifted knots (see e.
g. [2]) and we show that such a method is relevant for the numerical integration of square-
integrable functions. Our approach is based on applying the method of approximation by
families of piecewise constant functions systematically studied in [1]. More precisely, we discuss
the following formula

1∫
0

f(x) dx ∼ 1

n

n−1∑
k=0

f∗
(
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n
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)
, f∗ ∈ L2 , n ∈ N , (0.1)

where L2 is the space of 1-periodic square-integrable functions equipped with the standard
norm, f∗ is a periodic extension of f and λ is a uniformly distributed on [ 0, 1) random
variable. For the sake of simplicity we denote the left-hand side and the right-hand side of
(0.1) by I(f) and In;λ(f), respectively.

By the symbol Cn we denote the set

Cn =
∪
τ∈R

Cn,τ ,

where Cn,τ , τ ∈ R, is the space of 1-periodic functions f(x) satysfying f(x + τ) = ck for
x ∈

[
k
n ,

k+1
n

)
, k = 0, 1, . . . , n − 1. Clearly, Cn,λ = Cn,λ+ 1

n
. Following [1], we define the family

of operators mapping L2 into the space Cn, n ∈ N of piecewise constant functions by (λ is a
real parameter)
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where the 1-periodic function Kn given on the period by setting

Kn(h) =


n, h ∈

[
0,

1

n

)
0, h ∈

[
1

n
, 1

) (0.3)

is called kernel.
Dealing with families (0.2) we consider functions in L2([0, 1)

2), which depending on two
variables x and λ. We use the symbol ∥ · ∥[2] to denote the corresponding norm, i. e.,

∥ f ∥[2] =
( 1∫

0

1∫
0

| f(x, λ) |2 dxdλ
)1/2

. (0.4)

As it was shown in [1], the quality of approximation by families (0.2) can be described in
terms of the modulus of continuity given by

ω(f, δ) = sup
0≤h≤δ

∥ f∗(x+ h)− f∗(x) ∥2 , 0 ≤ δ ≤ 1 , (0.5)

More precisely, the following inequality holds.

∥ f − In;λ(f) ∥[2] ≤ 9ω(f, n−1) , f ∈ L2 , n ∈ N , (0.6)

The paper is organized as follows. The main result on quality of formula (0.1) is formulated
and proved in Section 1. Section 2 is devoted to description of the corresponding algorithm
of numerical integration. In Section 3 the table demonstrating the approximating properties
of the algorithm is placed.

1. Main result

In this section P{A} denotes the probability of an event A. The symbols E and D stand
for mathematical expectation and variance, respectively.

Theorem. Let m ∈ N and ηj , j = 1, . . . ,m, be independent random variables uniformly
distributed on [0, 1], θj = ηj/n, j = 1, . . . ,m. Then for f ∈ L2, n ∈ N and ε >
9m−1/2ω(f, n−1)

P
{ ∣∣∣ 1

m

m∑
j=1

In; θj (f)− I(f)
∣∣∣ < ε

}
≥ 1 −

( 9ω(f, n−1)√
mε

)2
. (1.1)

Proof. Taking into account that the function In;λ(f) is n−1-periodic and

dFθj (λ) = ndλ , λ ∈ [ 0,
1

n
) , (1.2)
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for j = 1, . . . ,m, where Fθj is the distribution function of θj , we get by the definitions of
expectation and variance

E
(
In; θj (f)

)
= E ( In; θ1(f) ) = n

1
n∫

0

In;λ(f) dλ =

1∫
0

In;λ(f) dλ = I(f) , (1.3)

D
(
In; θj (f)

)
= D ( In; θ1(f) ) = E

(
( In; θ1(f)− E ( In; θ1(f) ) )

2
)
=

= n

1
n∫

0

(
In;λ(f)− n

1
n∫

0

In; t(f) dt
)2

dλ =

1∫
0

∣∣ In;λ(f)− I(f)
∣∣2 dλ . (1.4)

In view of the Chebyshev inequality and (1.3) the left-hand side of (1.1) can be estimated
from below by

1 − ε−2D
( 1

m

m∑
j=1

In; θj (f)
)
. (1.5)

As the values In; θj are independent and they have one and the same distribution law, we get

D
( 1

m

m∑
j=1

In; θj (f)
)

= m−2
m∑
j=1

D
(
In; θj (f)

)
= m−1D

(
In; θ1(f)

)
. (1.6)

Combining (1.4)-(1.6) we get

P
{ ∣∣∣ 1

m

m∑
j=1

In; θj (f)− I(f)
∣∣∣ < ε

}
≥ 1 − ε−2m−1

1∫
0

∣∣∣ In;λ(f)− I(f)
∣∣∣2 dλ . (1.7)

Applying (0.6) in combination with Hölder inequality and taking into account that

1∫
0

In;λ(f, x) dx = In;λ(f) , (1.8)

we get
1∫

0

∣∣∣ I(f)− In;λ(f)
∣∣∣2 dλ ≤

1∫
0

( 1∫
0

| f(x)− In;λ(f, x) | dx
)2

dλ (1.9)

and

1∫
0

( 1∫
0

| f(x)− In;λ(f, x) | dx
)2

dλ ≤ ∥ f − In;λ(f) ∥2[2] ≤ 81ω(f, n−1)2 . (1.10)
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That means

P
{ ∣∣∣ 1

m

m∑
j=1

In; θj (f)− I(f)
∣∣∣ < ε

}
≥ 1 − 81 ε−2m−1 ω(f, n−1)2 =

= 1 −
( 9ω(f, n−1)√

mε

)2
. (1.11)

The proof is complete.

2. Computational aspects

In this section we describe the algorithm of numerical integration of L2-functions based
on Theorem above. It has the following input parameters:

(i) f ∈ L2 — function to be integrated;

(ii) ε ∈ ( 0,+∞) — approximation error;

(iii) σ ∈ ( 0, 1) — probability error;

(iv) n ∈ N — number of knots or volume of the grid;

(v) m ∈ N — number of random shifts of the grid.

The parameters ε, σ, n and m are dependent on each other. If the approximation error and
probability error are given, then we are looking for n and m satisfying

P
{ ∣∣∣ 1

m

m∑
j=1

In; θj (f)− I(f)
∣∣∣ < ε

}
≥ 1 − σ . (2.1)

If the estimate from above for the modulus of continuity is known, i. e., ω(f, δ) ≤ ω(δ) for
0 ≤ δ ≤ 1, in view of (1.1) it is sufficient to require

cn ≡ 9ω(n−1) ≤
√
mσ ε (2.2)

in order to achieve the desired level of both the approximation and probability errors.
The computational procedure can be described as follows. First we choose independent

uniformly distributed on [ 0, 1) random variables ηj , j = 1, . . . ,m, and we determine θj =
ηj/n, j = 1, . . . ,m. After that we compute the numbers

In; θj (f) =
1

n

n−1∑
k=0

f

(
k

n
+ θj

)
, ( j = 1, . . . ,m ) . (2.3)

Finally we calculate

I∗n(f ; Φ) =
1

m

m−1∑
j=1

In; θj (f) , ( Φ = { θj , j = 1, . . . ,m } ) . (2.4)
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By Theorem and (2.2) this number satisfies (2.1), i. e., it approximates I(f) up to ε with
the probability at least 1− σ.

Relation (2.2) can be fulfilled in some different ways. If n is given, its left-hand side cn is
a constant and the prescribed level of errors is achieved by choosing the parameter m only.
Taking into account that it should be chosen as small as possible we get from (2.2) the explicit
formula for its optimal value

m =

[
c2n
σε2

]
+ 1 . (2.5)

It is interesting to notice that the classical Monte-Carlo method is a special case of our method
corresponding to n = 1. It is convenient, if we lack information on the smoothness properties
of a given function f or f is “bad” in the sense that its modulus of continuity tends to 0
slowly. On the other hand, m is the only parameter which is responsible for both errors. Thus,
the Monte-Carlo method being quite universal does not take into account any information on
the smoothness properties of a function to be approximated.

If we a priori determine m , the necessary level of errors can be reached by increasing the
parameter n. It is an effective and economic way of calculations, if a given function has a“good”
smoothness in L2. Indeed, in contrast to the Monte-Carlo method it is not necessary now to
increase the number of random variables, in order to achieve the desired approximation error,
that is, we do not need to be “too careful” when choosing the generator of random variables
we would like to use. Reminding the well-known principle that the greater m, the “better”
generator should be, we avoid in such a way one of the most complicated technical problems,
which does always arise, if stochastic approaches are applied.

In a certain sense, our method with fixed m is close to the classical rectangle formula,
which can be interpreted as the degenerated case of the general situation corresponding
formally to m = 0. On the other hand, its properties are much better than the properties
of classical cubatures. Indeed, in contrast to the rectangle formula with fixed nodes, which is
applicable only for continuous functions, we can integrate functions in L2, even, if m = 1.
Moreover, the approximation error is estimated by the L2-modulus of continuity, which is less
than the classical modulus of continuity in the uniform metric.

3. Table of practical results

In this section we present the results obtained by program which implements the previously
mentioned algorithm. The program integrated the function f(x) = sin(1/x) which is strongly
oscillating. So, the classical cubature formulas and algorithms of numerical integration would
be ineffective applied to this function.
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Таблица 1. The average approximation error depending on n and m

n m Average approximation error
100 100 10−3

100 1000 4 · 10−4

100 10000 1.5 · 10−4

100 100000 5.3 · 10−5

1000 100 2 · 10−4

1000 1000 6 · 10−5

1000 10000 2 · 10−5

1000 100000 5.5 · 10−6

10000 100 4.5 · 10−5

10000 1000 1.5 · 10−5

10000 10000 4 · 10−6

100000 100 8.5 · 10−6

100000 1000 2 · 10−6

Alas, in virtue of the computing capabilities of computer used these are the maximum
values that could be obtained during the reasonable time. However, with the aid of the modern
computers one can easily integrate strongly oscillating functions with minor approximation
errors.
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