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Abstracts. Conformal map has application in a lot of areas of science, e.g., fluid flow, heat conduction,
solidification, electromagnetic, etc. Especially conformal map applied to elasticity theory can provide
most simple and useful solution. But finding of conformal map for custom domain is not trivial
problem. We used a numerical method for building a conformal map to solve torsion problem. In
addition it was considered an infinite system method to solve the same problem. Results are compared.
Keywords: conformal map, numerical methods, torsion problem, infinite systems

1. Introduction

A conformal (or angle-preserving) map between two domains is a function which
preserves oriented angles between curves as well as their direction. Such function
preserves both angles and the shapes of infinitesimally small figures, but not necessarily
their size. Conformal mapping has for more then a century, been powerful tool in
mathematics, engineering, physics and a lot of other subjects of the science, especially
in solving various partial differential equations (PDEs).

One major approach in developing methods for numerical conformal mapping is
based on the following interpretation of the Riemann mapping theorem: there exists a
conformal mapping f : D → U with f(z0) = 0 and f ′(z0) nonzero real, where z0 ∈ D,

and this function has a power series expansion f(z) = c1(z−z0)+
∞∑
n=2

cn(z−z0)
n, with c1

nonzero real and z0 ∈ D, which converges uniformly in every closed disk with center z0
and contained in D. However, a polynomial which is a good approximation of f in D is

not the same as a truncated power series. If a polynomial p(z) = c′1(z−z0)+
N∑

n=2

(z−z0)
n

approximates f with accuracy ϵ > 0 then it is necessary that every term of p(z) must
approximate the corresponding term of the power series with accuracy ϵ > 0 on the set
D ∩ B(z0, R), where R = |z − z0| is the radius of convergence of the power series. All
this means is that a polynomial p which is a good approximation of the power series
starts in the same way as the power series, but the relative error in the coefficients
increases with increasing n [24].

The widely used current computational techniques are based on the integral
equation methods where an integral equation is developed to relate the boundaries
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of the problem region and the standard region like the unit disk. Once the boundaries
are discretized at n points, the integral equation is reduced to a system of algebraic
equations. The majority of researches in computational conformal mapping is basically
divided in two groups: the first one, where the maps are constructed from a standard
region(such as the unit disk) into the problem region, and the second, where the maps
are constructed the other way around.

General methods of approximate conformal map building can be found in survey
articles by A.F. Bermant and A.I. Markushevich [5], M.K. Govurin and L.V.
Kantarovich [13]. Also one can check monographs by L.V. Kantarovich and V.I. Krilov
[21], V. Kopenfels and F. Shtalman [23], P.F. Filchakov [11] et al.

There are several types of approximate methods for building the mapping function
z = ω(ζ) – analytical, graphical-analytical and experimental-analytical. In these
methods approximate expression of mapping function is built as polynomial

z = ω(ζ) =
m∑

k = 1

Ckζ
k (1)

where, in general, coefficients Ck = α + iβ are complex. In general, representation of
approximate mapping as a polynomial (1) makes solution of boundary-value problems
appreciably easy. The most easy solution of boundary-value problem can be found
exactly when the conformal mapping is represented as a polynomial of ζ powers.

There was developed an alternative method for building of interpolation
polynomials for simply connected and biconnected regions using Lagrange polynomials.
Also it was designed the methodology for constructing of successive approximations
with adding intermediate nodes. Description of this method can be found in work by
A.G. Ugodchikov [41].

2. Conformal map method

2.1. Problem definition

Let us consider the most simple problem – a problem of approximating to a function
z = ω(ζ). This function is conformal map from unit disk |ζ| < 1 into the domain S of
complex plane z = x+iy. The domain S is bounded by piecewise-smooth contour L̄. Let
the origin of coordinates for the plane z be inside L̄. We will normalize conformal map
in the way such that the center of the unit disk ζ = ζ0 = 0 maps to z = z0 = 0 ∈ S and
the point Am of the boundary γ of the unit disk with the complex coordinates ζm = 1
maps to Mm from the boundary of S (Fig. 1).

Building the conformal map we will keep in mind the theorem [42].

Theorem 1. Let Σ be finite or infinite simply connected domain on the complex plane
z = x + iy with the simple closed boundary. Let ω(σ) be function regular in Σ and
continuous up to a boundary. Let point z defined by z = ω(ζ) circumscribe simple
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Рис. 1. Conformal map from unit disk |ζ| < 1 into domain S

closed circuit L̄ when ζ circumscribe circuit γ. Then relation z = ω(ζ) is conformal
map from S (enclosed within L̄) into Σ.

A polynomial of positive degrees is a regular function in unit disk |ζ| ≤ 1. So we will
search for approximation of conformal map that maps unit disk |ζ| < 1 into domain S
as a polynomial

z = ωm(ζ) =
m∑

k = 1

Ckζ
k. (2)

This means that we have to find coefficients Ck = αk + iβk(k = 1, . . . ,m) such that
curve L′(with the parametric equation z = ωm(e

iθ) ):

• will not have double points and cusps,

• will have set of common points with the boundary L̄,

• deflection of curve L′ from boundary L̄ of domain S should be in tolerable limit.

Note that conformity is violated in the corner points. So the exact mapping of corner
points (at least two-tangent points) by the polynomial (2) is impossible. Because of
this the piecewise smooth boundary L̄ should be transformed into curve L with the
continuously changing tangent. In general corners of L̄ can be rounded by arcs of
constant radius. Such rounding can be found in real world, for example in machine
elements and structural engineering.
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2.2. Construction of conformal map

In [42] it is shown that the problem of conformal map building can be transformed
into the problem of construction of interpolation Lagrange polynomial fn(ζ). This
polynomial can be written as

fn(ζ) =
m∑

j = 1

fj
A(ζ)

A′(ζj)(ζ − ζj)
, (3)

where

A(ζ) =
m∏

j = 1

(ζ − ζj). (4)

If conformal map has next formula

ωm(ζ) =
m∑

k = 1

Ckζ
k, (5)

where

Ck = αk + iβk =
1

m

m∑
j = 1

zje
−ikθj (k = 1, . . . ,m), (6)

then we have formulas for complex coefficients
αk =

1

m

m∑
j = 1

(xj cos
2π

m
kj + yj sin

2π

m
kj),

βk =
1

m

m∑
j = 1

(yj cos
2π

m
kj − xj sin

2π

m
kj).

(7)

After calculation of coefficients Ck (k = 1, . . . ,m) we should build boundary L′. We
should also be sure that curve does not have double points and cusps, and deflection
of curve L′ from boundary L is in tolerable limit.

We can conclude that in case of known nodes Mj (j = 1, . . . ,m) from boundary L
process of construction of approximate conformal map as an interpolation polynomial
is easy.

The problem of match making between nodes of boundaries γ and L is separate
and difficult problem by itself. In particular it is nearly impossible to predefine this
match exactly. Because of this we will use the approximate methods of determining
this match. Another way is algorithm which conjectures the first approximation and
then let us obtain more accurate location of such points. To know more please see [42].
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3. Method of infinite systems

3.1. Problem definition

Another method of solution of torsion problem is method of infinite systems
described in [8].

The problem of torsion of a polygonal-base prism was reduced in [2] to the numerical
solution of completely regular infinite systems of linear algebraic equations. Studies on
this subject are reviewed in the monograph [3]. The theory of regular and quasiregular
infinite systems applied to other problems in the mechanics of elastic bodies is addressed
in references [14, 15, 16, 21, 22, 29, 20, 28, 36, 37, 38] The torsion of a cross-base prism
is studied in [1, 3]. Not very accurate solutions of infinite systems allow a satisfactory
assessment of the torsional stiffness of a prism, but do not allow a reliable analysis of
the stress state, especially in the neighborhood of the vertex of the reentrant angle.

The limitants method was proposed in [22] to estimate solutions of regular infinite
systems of linear algebraic equations. The applications of the method are reviewed in
references [14, 21, 29, 28]. The use of the limitants method is difficult because of the
necessity of solving a great number of finite systems of linear algebraic equations. More
attractive is the improved reduction method [14, 15], which leads to one finite system of
equations. However, this method does not allow assessing the reliability of approximate
solutions. A modification of Koyalovich’s limitants method that estimates the upper
and lower bounds by solving only two auxiliary systems of linear algebraic equations
is proposed in [7]. We will use this method here to solve the problem of torsion of a
cross-base prism.

As it is widely known Hooke’s law for a prism under torsion can be written in form

θ =
MT

C
. (8)

The tangential stresses in the prism are expressed in terms of the Prandtl stress function

σzx = Gθ
∂

∂y
U ; σzy = −Gθ

∂

∂x
U. (9)

Which is determined by solving Dirichlet’s problem for Poisson’s equation

∂2

∂x2
U +

∂2

∂x2
U = −2; U |Γ = 0. (10)

in the domain occupied by the prism base.
Following paper [3], we will restrict ourselves to a cross-shaped domain symmetric

about the coordinate axes (Fig. 2). The symmetry allows us to consider three
subdomains D0, D1, and D2 with boundaries dashed (see the Fig. 2).
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Рис. 2. Subdomains D0, D1, and D2

3.2. Representation of the Solution of Dirichlet’s Problem

In references [1, 3], a solution was obtained by introducing a system of auxiliary
functions. We will outline a different method that leads to somewhat different results.

Using partial solutions of Poisson’s equation

U = a2 − x2, (x, y) ∈ D0 ∪D2,
U = b2 − y2, (x, y) ∈ D1,

(11)

we reduce Dirichlet’s problem (10) to Dirichlet’s problems for harmonic functions
Vi(x, y) in the subdomains D0, D1, D2:

∂2

∂x2
Vi +

∂2

∂x2
Vi = 0; (x, y) ∈ Di,

Vi|Γi
= Fi(x, y).

(12)

The solution of Dirichlet’s problem (12) for a harmonic function in a rectangular
domain is described in the monograph [21]. In [8] the solution is reduced to a series of
special form having the property of Kronecker deltas relative to the values on the sides
of the rectangle and formulate this as a lemma. To learn more on this method please
read [8].
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4. Numerical method

In [42] it is described an algorithm of successive approximation. This algorithm
helps to obtain more accurate location of points Mj (see fig. 1) on the boundary L.
So this algorithm will let us build the approximate polynomial with the minimum
deviation of L′ from L.

Described algorithm can be improved. Please note that conformal map which is
built by described algorithm can be used for solving of boundary value problems(e.g.
in theory of elasticity).

As for theory of elasticity local deflections of boundary L′ from boundary L will
seriously effect on local stress on boundary. These local disturbances of stress field are
caused uppermost not by deflection ∆ of boundary L′ from given L but they are caused
by distortion of radius of curvature. And this is true because boundary L′ has form
of wave curve which passes main or intermediate interpolation nodes. In case of wave
curve the radius of curvature of boundary L′ changes in wide range. For complex curve
L the radius of curvature can change it’s direction twice in the range of single step.

According to [11] the function

z = ω(ζ) =
m∑

k = 1

C̃kζ
k, (13)

where

C̃k =
Ck + Ck∗

2
(k = 1, . . . ,m)

has same disadvantage. The curve L′′ corresponding to function (13) has nearly twice
smaller deflection ∆ but boundary L′′ saves it’s form.

Because of local distortions of boundary for coefficients Ck or Ck∗ as well as for
coefficients C̃k there are essential errors in determining of stress in boundary points.
These errors can reach 50÷ 80% (and even more) as compared with the exact solution
for curve L. It is also easy to see that increasing of power of mapping function will not
correct this situation.

We can increase the accuracy of boundary L′ and accuracy of solution for boundary-
value problem by a simple transformation – the integral averaging. We will apply this
transformation to approximate solution on interval θ − π

m
≤ θ ≤ θ + π

m
which is equal

to one step of interpolation. So we have:

z = ω̃n(ζ) =
m

2π

π
m∫

− π
m

ωn[ρe
i(θ+t)]dt (14)

It is good to use here function ω̃n(ζ) according to (13) because the corresponding curve
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L′′ has deflections to both sides of the curve L. After integration we get

z = ω̃n(ζ) =
m

2π

π
m∫

− π
m

m∑
k = 1

C̃kρ
keik(θ+t)dt =

m

2π

m∑
k = 1

C̃kζ
k

π
m∫

− π
m

eiktdt

 =

m∑
k = 1

Ckζ
k sin k

π
m

k π
m

=
m∑

k = 1

Dkζ
k.

(15)

Here
Dk = C̃kσk (k = 1, . . . ,m), (16)

where σk (k = 1, . . . ,m) – weighting coefficients, which are defined by

σk =
sin k

π

m
π

m

(k = 1, . . . ,m). (17)

The border of L′′′, which corresponds to (15), is nearly to match border L. This
means that L′′′ has deflection from L much less then curves L′ and L′′. But the biggest
advantage is that errors in radius of curvature are not more than 5÷ 10%. In the same
time curves L′ and L′′ could not be compared with curve L in the sense of radius of
curvature. On the one step of interpolation these curves (L′ and L′′) could change not
only magnitude but also a sign of curvature.

Please note that the operation of integration is applied to all approximate
expressions of conforming map. And because of this, in future, we will not distinguish
between denotes for coefficients of ω̃n(ζ) and ωn(ζ). Even after the essential increasing
of accuracy of the border of S ′ (using weighting coefficients (17)) local distortions of
the field of stresses partly can be saved.

On the other hand the real machine elements and structural members are made
with some tolerance of the form. This means that real boundary does not match the
ideal boundary L.

5. Comparison and conclusions

In this article we introduced a numerical method for conformal mapping based on
algorithm of successive approximations. In Table 1 a comparison of values of stiffness
coefficient calculated by the Chekhov’s method described in the chapter 3 (upper C+

and lower C− estimates) and values CK found by conformal maps method (given values
are calculated for the cross-shaped domain with rounded corners). The bottom row of
the table contains approximate values of CA from the monograph [3]. In Fig. 3 you
can see the relative error estimation graph for conformal map method (solid line) and
Abramyan’s method (dashed one).

Please note that estimation of stiffness coefficient in [3] is very crude. Maybe this
error of estimator ensue from errors in calculation, e.g. accumulated rounding error on
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Рис. 3. Relative error estimation

old computers. As for Chekhov’s method we consider it results to compare with results
obtained with the help of conformal map method. Chekhov’s estimation is considered
as the exact (analytical) solution of the torsion problem for the cross-based (with the
right angles) prism.

We should note that estimate CK obtained by conformal map method is less
then lower Chekhov’s estimate C− which are calculated for the cross-shaped (without

Таблица 1. Comparison of exact and numerical solutions

γ = c/a 1/2 1 2 3 4 9
C+/(16a4G) 0.571320 1.064226 1.874217 2.573292 3.246777 6.581903
C−/(16a4G) 0.571319 1.064225 1.874216 2.573290 3.246775 6.581901
CK/(16a4G) 0.570416 1.063575 1.863686 2.571791 3.238395 6.571751
CA/(16a4G) 0.580 1.0504 1.8436 2.5421 3.2152 6.5487
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rounded corners) domain. This can be explained by the fact that according to

C = 2G

∫∫
D

Udxdy (18)

the value of stiffness coefficient is directly proportional to the volume bounded by the
surface z = U(x, y).

Also please note that the introduced conformal map method (see Section 2.2) is
really convenient. As we said above this method can be easily applied in practical
usage, e.g. in engineering calculations. This is because of property of real world machine
elements have no right angles. Instead of right angles there is some curve which can be
easily approximated by arcs of finite radius.

Another practical advantage of the conformal map method is relatively easy way of
program implementation. Convenience in programming is because of modules (libraries
with the set of functions) written for the prism with the specific base are easily extended
and adapted to new complex domains. Especially the core algorithm functions are not
changed for all simply connected domains but it is only changed the algorithm of
fetching down of nodes.

And the main advantage of the conformal map method consists of the fact that for
most of complex simply connected domains analytical solution cannot be found. Or
even if it is found that it is hard to use it in practice. But numerical solution found by
conformal map method can be easily found and used (e.g., in engineering calculations)
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