УДК 517.927

Собственные колебания гидросистемы "жидкость-газ" в цилиндрической области

Э. Л. Газиев

Крымский инженерно-педагогический университет, Симферополь 95007. *E-mail: egaziev@list.ru*

Аннотация. В работе изучается проблема собственных колебаний гидросистемы "идеальная жидкость-баротропный газ", заполняющей цилиндрический контейнер. Доказаны теоремы о дискретности и положительности спектра, базисности системы собственных функций, установлено наличие асимптотически распадающихся акустических и пограничных волн. Получены вариационные отношения для собственных значений; проанализированы асимптотика, сходимость и погрешность численного решения характеристического уравнения.

Ключевые слова: идеальная жидкость, баротропный газ, собственные колебания, асимптотика спектра, собственные значения, собственные функции, численная погрешность.

Введение

Малые движения и собственные колебания жидкости, частично или полностью заполняющей контейнер, находящийся в условиях слабой гравитации, исследуются учеными, начиная со второй половины XX века. Полученные в этой области результаты представлены, например, в монографиях [1]–[2], [8], [15]. Актуальность этой проблемы объясняется важностью и сложностью осуществления оригинальных экспериментов в условиях полетов летательных аппаратов, в том числе ракетной и самолетной техники.

В более сложной постановке, а именно, в случае гидросистемы, состоящей из несмешивающихся жидкостей, задача изучалась, например, в работах [3], [9], [14]. В частности, для задачи о малых колебаниях системы из нескольких несмешивающихся идеальных жидкостей исследованы свойства спектра и полноты системы собственных функций, получены решения задачи для гидросистемы в прямоугольном канале, цилиндрическом и секториальном сосудах. В работах [11]–[12] исследована проблема взаимодействия жидкости с акустическим полем.

С физической точки зрения контейнер может быть заполнен не только жидкостью, но и ее парами. Поэтому в последние годы стала изучаться новая проблема — задача о малых движениях и собственных колебаниях газожидкостной системы в ограниченной области. При этом газ можно считать баротропным, а жидкость — несжимаемой идеальной либо вязкой. В работах [3]–[4], [16] задача рассматривается в такой постановке, причем учитывается действие капиллярных и гравитационных сил, однако плотность газа в состоянии равновесия считается постоянной.

© Э. Л. ГАЗИЕВ

Э. Л. ГАЗИЕВ

В статьях [5]–[6] изучается обобщение проблемы, исследуемой в [16], а именно, случай, когда плотность газа в гидросистеме изменяется вдоль вертикали по экспоненциальному закону, и доказаны теоремы о разрешимости, структуре спектра и свойствах собственных функций, исследован вопрос устойчивости решения.

Целью данной статьи является подробное исследование спектральной задачи, возникающей в проблеме собственных колебаний гидросистемы "идеальная жидкость-баротропный газ", заполняющей неподвижный цилиндрический контейнер и имеющей горизонтальную границу раздела сред.

1. Постановка спектральной задачи

Будем считать, что цилиндрический контейнер $\Omega \subset \mathbb{R}^3$ с произвольным поперечным сечением Г заполнен идеальной несжимаемой жидкостью плотности ρ_1 и баротропным газом. Жидкость занимает область $\Omega_1 = \Gamma \times (-h_1, 0)$, а газ — область $\Omega_2 = \Gamma \times (0, h_2)$. Выберем декартову систему координат Oxyz таким образом, чтобы Г лежала в плоскости Oxy, а образующая цилиндра была направлена вдоль оси Oz. Считаем также, что вдоль оси Oz сверху вниз действует гравитационное поле с ускорением g > 0, а газ является баротропным, т.е. связь между давлением в газе и его плотностью задается в виде $\nabla P = a^2 \nabla \rho$, где $a^2 = \text{const} - \text{квадрат}$ скорости звука в газе. Тогда в состоянии покоя плотность газа такова:

$$\rho_{2,0} = \rho_{2,0}(z) = \rho_{2,0}(0) \exp(-gz/a^2); \tag{1.1}$$

соответственно равновесное давление равно $P = P_0(z) = a^2 \rho_{2,0}(0) \exp(-gz/a^2) + c_0$, $c_0 = \text{const.}$

Рассмотрим малые колебания гидросистемы "жидкость-газ", близкие к состоянию покоя. При этом будем принимать во внимание также капиллярные (поверхностные) силы, действующие на границе раздела "жидкость-газ", "твердая стенка-жидкость" и "твердая стенка-газ".

Считая колебания свободными, т.е. не зависящими от дополнительных внешних сил, будем разыскивать решения линеаризованных уравнений движения жидкости и газа, зависящие от времени t по закону $\exp(i\omega t)$, где ω — частота колебаний. Тогда можно убедиться (см. [5], с. 130), что движение в жидкости и газе является потенциальным. При этом для потенциалов смещений частиц жидкости и газа — искомых амплитудных функций $\Phi_1(x, y, z)$ и $\Phi_2(x, y, z)$ — возникает следующая спектральная задача:

$$\Delta \Phi_1 = 0 \quad (B \ \Omega_1), \quad \frac{\partial \Phi_1}{\partial n} = 0 \quad (Ha \ S_1), \tag{1.2}$$

$$-\Delta_0 \Phi_2 = \lambda a^{-2} \Phi_2 \quad (B \ \Omega_2), \quad \frac{\partial \Phi_2}{\partial n} = 0 \ (Ha \ S_2), \quad \lambda := \omega^2, \tag{1.3}$$

$$\frac{\partial \Phi_1}{\partial z} = \frac{\partial \Phi_2}{\partial z} =: \zeta \quad (\text{Ha}\,\Gamma, \text{ т.e. при } z = 0), \ \int_{\Gamma} \zeta d\Gamma = 0, \ \int_{\Gamma} \Phi_1 d\Gamma = 0, \ \int_{\Gamma} \Phi_2 d\Gamma = 0, \ (1.4)$$

$$-\sigma\Delta_{\Gamma}\zeta + g\Delta\rho\zeta = \lambda(\rho_{1}\Phi_{1} - \rho_{2,0}(0)\Phi_{2}) \quad (\text{Ha }\Gamma), \quad \frac{\partial\zeta}{\partial n_{\Gamma}} = 0 \quad (\text{Ha }\partial\Gamma), \quad (1.5)$$

$$\Delta \rho := \rho_1 - \rho_{2,0}(0), \quad \Delta_{\Gamma} := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}, \quad \Delta := \Delta_{\Gamma} + \frac{\partial^2}{\partial z^2}, \quad \Delta_0 \Phi_2 := \rho_{2,0}^{-1}(z) \operatorname{div}(\rho_{2,0}(z) \nabla \Phi_2).$$
(1.6)

Здесь: $S_1 := \{\partial \Gamma \times (-h_1, 0)\} \cup \{(x, y, z) : (x, y) \in \Gamma, z = -h_1\}$ — твердая стенка, примыкающая к жидкости, $S_2 := \{\partial \Gamma \times (0, h_2)\} \cup \{(x, y, z) : (x, y) \in \Gamma, z = h_2\}$ твердая стенка, примыкающая к газу, \vec{n} — внешняя нормаль к цилиндру $\Omega, \sigma > 0$ — коэффициент поверхностного натяжения на границе раздела "жидкость-газ", \vec{n}_{Γ} — внешняя нормаль к границе $\partial \Gamma$ сечения Γ . Эту границу $\partial \Gamma$ считаем гладкой кривой класса C^2 .

Особенностью задачи (1.2)–(1.6) является то обстоятельство, что здесь спектральный параметр λ входит не только в уравнение (1.3), но и в граничное условие (1.5). Кроме того, порядок дифференциальных операторов на границе Γ (см. (1.4)) выше порядка дифференциального оператора в уравнениях (1.2) и (1.3). Наконец, имеется также граничное условие (1.5) на контуре $\partial \Gamma$ — многообразии коразмерности 2. Общее исследование спектральной задачи о собственных колебаниях системы "жидкость-газ" проведено в работе [6]. Здесь будем изучать лишь собственные колебания системы в цилиндрическом сосуде и при условии g > 0.

Введем гильбертово пространство скалярных функций $L_2(\Gamma)$ с обычным скалярным произведением $(\zeta, \eta)_{L_2(\Gamma)} := \int_{\Gamma} \zeta(x, y) \overline{\eta(x, y)} dx dy$, а также его подпространство $L_{2,\Gamma}$ функций, ортогональных к единичной функции, заданной на Γ (см. (1.4)):

$$\int_{\Gamma} \zeta \, d\Gamma = (\zeta, 1_{\Gamma})_{L_2(\Gamma)} = 0.$$

Введем, далее, в $L_{2,\Gamma}$ оператор B_{σ} по закону

$$B_{\sigma}\zeta := -\sigma\Delta_{\Gamma}\zeta + g\Delta\rho\zeta, \ \zeta \in \mathcal{D}(B_{\sigma}) := \left\{\zeta \in L_{2,\Gamma} \cap H^{2}(\Gamma) : \frac{\partial\zeta}{\partial n_{\Gamma}} = 0 \ (\text{Ha}\ \partial\Gamma)\right\}. (1.7)$$

Так как $\partial \Gamma$ — кривая класса C^2 , то можно установить, опираясь на формулу Грина для оператора Δ_{Γ} , что B_{σ} — положительно определенный самосопряженный оператор и

$$(B_{\sigma}\zeta,\zeta)_{L_{2,\Gamma}} = \int_{\Gamma} (\sigma |\nabla_{\Gamma}\zeta|^2 + g\Delta\rho |\zeta|^2) \, d\Gamma =: (\zeta,\zeta)_{B_{\sigma}}, \ \forall \zeta \in \mathcal{D}(B_{\sigma}) \subset L_{2,\Gamma}.$$

Отсюда следует, что существует положительный и притом компактный обратный оператор B_{σ}^{-1} , действующий в $L_{2,\Gamma}$, а потому граничное условие (1.5) можно переписать в виде

$$\zeta = \lambda B_{\sigma}^{-1} (\rho_1 \Phi_1 - \rho_{2,0}(0) \Phi_2) \quad (\text{Ha } \Gamma).$$
(1.8)

Опираясь на (1.8) и используя формулы Грина для операторов Δ_{Γ} и Δ_0 (см. (1.2) и (1.3)), можно установить, что собственные значения λ задачи (1.2)–(1.3) являются последовательными минимумами функционала

Э. Л. ГАЗИЕВ

$$F(\Phi_1; \Phi_2) := \frac{\rho_1 \int_{\Omega_1} |\nabla \Phi_1|^2 \, d\Omega_1 + \int_{\Omega_2} \rho_{2,0}(z) |\nabla \Phi_2|^2 \, d\Omega_2}{a^{-2} \int_{\Omega_2} \rho_{2,0}(z) |\Phi_2|^2 \, d\Omega_2 + (B_{\sigma}^{-1}(\rho_1 \Phi_1 - \rho_{2,0}(0)\Phi_2), (\rho_1 \Phi_1 - \rho_{2,0}(0)\Phi_2))_{L_{2,\Gamma}}}$$
(1.9)

Отсюда, в частности, следует, что собственные значения λ вещественны и неотрицательны. Более того, при $\lambda = 0$ задача (1.2)–(1.3) имеет лишь тривиальное решение, и потому собственные значения λ в задаче (1.2)–(1.3) положительны.

Заметим еще, что задача (1.2)–(1.5) не имеет решений вида $\Phi_1(x, y, z) \equiv 0$, $\Phi_2(x, y, z) \equiv \Phi_2(z)$, отвечающих случаю, когда жидкость и граница раздела "жидкость-газ" неподвижны, а в газе имеются лишь вертикальные волны сжатия–растяжения.

2. Применение метода разделения переменных

Цилиндричность области Ω , заполненной жидкостью и газом, позволяет провести разделение переменных в задаче (1.2)–(1.6), если искать решения в виде

$$\Phi_1(x, y, z) = v_1(z)u(x, y), \quad \Phi_2(x, y, z) = v_2(z)u(x, y), \quad \zeta = \eta u(x, y).$$
(2.1)

Тогда вместо задачи (1.2)–(1.6) возникает задача

$$-\Delta_{\Gamma} u = \mu u \quad (\text{Ha } \Gamma), \quad \frac{\partial u}{\partial n_{\Gamma}} = 0 \quad (\text{Ha } \partial \Gamma), \quad \int_{\Gamma} u \, d\Gamma = 0,$$
 (2.2)

а также спектральная проблема

$$\frac{d^2 v_1}{dz^2} - \mu v_1 = 0 \quad (-h_1 < z < 0), \quad \frac{dv_1}{dz} = 0 \quad (z = -h_1), \tag{2.3}$$

$$-\rho_{2,0}^{-1}(z)\frac{d}{dz}\left(\rho_{2,0}(z)\frac{dv_2}{dz}\right) + \mu v_2 = \lambda a^{-2}v_2 \quad (0 < z < h_2), \quad \frac{dv_2}{dz} = 0 \quad (z = h_2),$$

$$\frac{dv_1}{dz} = \frac{dv_2}{dz} =: \eta \quad (z = 0), \quad (\sigma \mu + g\Delta \rho)\eta = \lambda(\rho_1 v_1(0) - \rho_{2,0}(0)v_2(0)). \quad (2.4)$$

Как известно, спектральная задача Неймана (2.2) (с дополнительным интегральным условием, т.е. в пространстве $L_{2,\Gamma}$) имеет дискретный спектр $\{\mu_k\}_{k=1}^{\infty}$, состоящий из положительных конечнократных собственных значений μ_k с предельной точкой на $+\infty$. Отвечающая этому спектру система собственных функций $\{u_k(x,y)\}_{k=1}^{\infty}$ задачи (2.2) образует ортогональный базис в пространстве $L_{2,\Gamma}$, а также в энергетическом пространстве $H_{\Gamma}^1 = H^1(\Gamma) \cap L_{2,\Gamma}$ с квадратом нормы $\|u\|_{H_{\Gamma}^1}^2 := \int_{\Gamma} |\nabla_{\Gamma} u|^2 d\Gamma$, $\int_{\Gamma} u \, d\Gamma = 0$. Далее будем считать, что выполнены следующие свойства ортонормировки:

$$(u_k, u_j)_{L_{2,\Gamma}} = \delta_{kj}, \quad (u_k, u_j)_{H_{\Gamma}^1} = \mu_k \delta_{kj}, \quad k, j \in \mathbb{N}.$$

$$(2.5)$$

Таким образом, для определения функций $v_2 = v_{2k}(z)$ возникает счетное множество спектральных задач (2.3)–(2.4), отвечающих значениям $\mu = \mu_k$, $k = 1, 2, \ldots$. Отметим еще, что собственные функции $u_k(x, y)$ задачи (2.2) являются также собственными функциями оператора B_{σ} из (1.7), отвечающими собственным значениям $\lambda_k(B_{\sigma}) = \sigma \mu_k + g \Delta \rho$, $k = 1, 2, \ldots$. Из (2.3)–(2.4) нетрудно вывести, что собственные значения λ этой задачи при $\mu = \mu_k$, $k = 1, 2, \ldots$, находятся среди значений функционалов

$$F_{k}(v_{1};v_{2}) := \frac{\rho_{1} \int_{-h_{1}}^{0} (|v_{1}'(z)|^{2} + \mu_{k}|v_{1}(z)|^{2})dz + \int_{0}^{h_{2}} \rho_{2,0}(z)(|v_{2}'(z)|^{2} + \mu_{k}|v_{2}(z)|^{2})dz}{a^{-2} \int_{0}^{h_{2}} \rho_{2,0}(z)|v_{2}(z)|^{2}dz + \lambda_{k}^{-1}(B_{\sigma})|\rho_{1}v_{1}(0) - \rho_{2,0}(0)v_{2}(0)|^{2}}.$$

$$(2.6)$$

3. Вспомогательные спектральные задачи

Прежде чем изучать задачи (2.3)–(2.4) при $\mu = \mu_k$, рассмотрим две вспомогательные спектральные задачи, имеющие непосредственное отношение к (2.3)–(2.4) с физической точки зрения. Это — задача о собственных колебаниях двух идеальных несжимаемых жидкостей, расположенных в областях Ω_1 и Ω_2 соответственно и имеющих постоянные плотности ρ_1 и $\rho_{2,0}(0)$, а также задача об акустических колебаниях баротропного газа в области Ω_2 .

Формулировка первой задачи формально получается из (1.2)–(1.6) при $a^2 \to \infty$ и имеет вид

$$\Delta \Phi_1 = 0 \quad (B \ \Omega_1), \quad \frac{\partial \Phi_1}{\partial n} = 0 \quad (Ha \ S_1), \quad \Delta \Phi_2 = 0 \quad (B \ \Omega_2), \quad \frac{\partial \Phi_2}{\partial n} = 0 \quad (Ha \ S_2), \quad (3.1)$$

$$\frac{\partial \Phi_1}{\partial z} = \frac{\partial \Phi_2}{\partial z} =: \zeta \quad (\text{на } \Gamma, \text{ т.е. при } z = 0), \quad \int_{\Gamma} \zeta d\Gamma = \int_{\Gamma} \Phi_1 d\Gamma = \int_{\Gamma} \Phi_2 d\Gamma = 0, \quad (3.2)$$

$$B_{\sigma}\zeta = \lambda(\rho_1\Phi_1 - \rho_{2,0}(0)\Phi_2)$$
 (Ha Γ). (3.3)

Формулировка второй задачи получается из (1.3), (1.4) при $\zeta \equiv 0$:

$$-\Delta_0 \Phi_2 = \lambda a^{-2} \Phi_2 \quad (\mathbf{B} \ \Omega_2), \quad \frac{\partial \Phi_2}{\partial n} = 0 \quad (\mathbf{Ha} \ S_2), \quad \frac{\partial \Phi_2}{\partial z} = 0 \quad (\mathbf{Ha} \ \Gamma), \quad \int_{\Gamma} \Phi_2 d\Gamma = 0. \quad (3.4)$$

Каждая из задач (3.1)–(3.3) и (3.4) допускает разделение переменных вида (2.1) и приводит снова к задаче (2.2), а также следующим задачам.

Первая задача:

$$\frac{d^2 v_1}{dz^2} - \mu v_1 = 0 \quad (-h_1 < z < 0), \quad \frac{dv_1}{dz} = 0 \quad (z = -h_1), \tag{3.5}$$
$$\frac{d^2 v_{22}}{dz^2} - \mu v_{22} = 0 \quad (0 < z < h_2), \quad \frac{dv_{22}}{dz} = 0 \quad (z = h_2),$$

$$\frac{dv_1}{dz} = \frac{dv_{22}}{dz} =: \eta \ (z=0), \quad \lambda_k(B_\sigma)\eta = \lambda(\rho_1 v_1(0) - \rho_{2,0}(0)v_{22}(0)); \tag{3.6}$$

вторая задача:

$$-\rho_{2,0}^{-1}(z)\frac{d}{dz}\left(\rho_{2,0}(z)\frac{dv_{21}}{dz}\right) = \nu v_{21}(z), \quad \nu := \lambda a^{-2} - \mu, \quad (0 < z < h_2),$$

$$\frac{dv_{21}}{dz} = 0 \quad (z = 0), \quad \frac{dv_{21}}{dz} = 0 \quad (z = h_2).$$
(3.7)

Решения задач (3.5)–(3.6) и (3.7) легко найти в явной форме с учетом формулы (1.1) для функции $\rho_{2,0}(z)$. Имеем для задачи (3.5)–(3.6) :

$$v_{1} = v_{1k}(z) = \alpha_{k}^{-1} \eta_{k} \frac{\operatorname{ch}[\alpha_{k}(z+h_{1})]}{\operatorname{sh}(\alpha_{k}h_{1})}, \quad -h_{1} \leq z \leq 0,$$

$$v_{22} = v_{22}(z) = -\alpha_{k}^{-1} \eta_{k} \frac{\operatorname{ch}[\alpha_{k}(z-h_{2})]}{\operatorname{sh}(\alpha_{k}h_{2})}, \quad 0 \leq z \leq h_{2}, \quad \alpha_{k} := \mu_{k}^{1/2},$$

$$\lambda =: \lambda_{k}^{(1)} = \alpha_{k} \lambda_{k} (B_{\sigma}) (\rho_{1} \operatorname{cth}(\alpha_{k}h_{1}) + \rho_{2,0}(0) \operatorname{cth}(\alpha_{k}h_{2}))^{-1}, \quad k = 1, 2, \dots.$$
(3.9)

Этим решениям отвечают пограничные волны, экспоненциально затухающие при отходе от границы Γ (т.е. при z = 0) вдоль нормали к этой границе.

Что касается задачи (3.7), то здесь справедливо следующее утверждение.

Лемма 1. Задача (3.7) имеет дискретный спектр $\{\nu_p\}_{p=0}^{\infty}$,

$$0 = \nu_0 < \nu_1 < \nu_2 < \dots < \nu_p < \dots, \ \nu_p \to +\infty \ (p \to \infty),$$
(3.10)

и систему собственных функций $\{v_{21p}(z)\}_{p=0}^{\infty}$,

$$v_{210}(z) \equiv 1, \quad \int_{0}^{h_2} \rho_{2,0}(z) v_{21p}(z) dz = 0, \quad p = 1, 2, \dots,$$

$$v_{21p}(z) = \exp(gz/(2a^2))(\cos(\pi pz/h_2) - gh_2/(2\pi pa^2)\sin(\pi pz/h_2)), \quad p = 1, 2, \dots,$$
(3.11)

полную и ортогональную в гильбертовом пространстве $L_2([0, h_2]; \rho_{2,0}(z))$ со скалярным произведением

$$(v,w)_{L_2([0,h_2];\rho_{2,0}(z))} := \int_0^{h_2} \rho_{2,0}(z)v(z)\overline{w(z)}dz, \qquad (3.12)$$

а также в энергетическом пространстве $H^1([0,h_2];\rho_{2,0}(z))$ с квадратом нормы

$$\|v\|_{H^{1}([0,h_{2}];\rho_{2,0}(z))}^{2} := \int_{0}^{h_{2}} \rho_{2,0}(z) |v'(z)|^{2} dz + \Big| \int_{0}^{h_{2}} \rho_{2,0}(z) v(z) dz \Big|^{2},$$

эквивалентной стандартной норме пространства $H^1([0, h_2])$.

Доказательство. Оно проводится по обычной схеме для задач Штурма– Лиувилля на конечном отрезке (см. например, [13]).

Именно, введем на множестве

$$\mathcal{D}(A) := \{ v(z) \in C^2([0, h_2]) : v'(0) = v'(h_2) = 0 \} \subset L_2([0, h_2]; \rho_{2,0}(z))$$
(3.13)

оператор A по закону

$$(Av)(z) := -\rho_{2,0}^{-1}(z) \frac{d}{dz} \Big(\rho_{2,0}(z) \frac{dv}{dz} \Big).$$
(3.14)

Тогда коротко задачу (3.7) можно переписать в виде $Av = \nu v, v \in \mathcal{D}(A)$.

Легко проверить, что оператор A симметричен на $\mathcal{D}(A) \subset L_2([0, h_2]; \rho_{2,0}(z))$ и положительно определен, т.е. $(Av, v)_{L_2([0,h_2]; \rho_{2,0}(z))} \geq c ||v||_{L_2([0,h_2]; \rho_{2,0}(z))}^2$, $\forall v \in \mathcal{D}(A)$, а потому допускает замыкание до самосопряженного положительно определенного оператора (его будем обозначать по-прежнему через A). При этом $\mathcal{D}(A^{1/2}) =$ $H^1([0, h_2]; \rho_{2,0}(z))$ компактно вложено в $L_2([0, h_2]; \rho_{2,0}(z))$, и тогда задача (3.7) имеет дискретный спектр (3.10) и систему собственных функций, образующих ортогональный базис в $L_2([0, h_2]; \rho_{2,0}(z))$ и в $H^1([0, h_2]; \rho_{2,0}(z))$.

Непосредственный подсчет показывает (с учетом формулы (1.1)), что собственные функции задачи (3.7) имеют вид (3.11), а собственные значения равны

$$\nu_p = (\pi p/h_2)^2 + g^2/(4a^4), \quad p = 1, 2, \dots$$

Следствием леммы 1 является такое утверждение.

Лемма 2. Вторая вспомогательная задача (3.4) имеет дискретный спектр

$$\lambda_{kp}^{(2)} := a^2(\mu_k + \nu_p) = a^2 \left(\mu_k + \left(\frac{\pi p}{h_2}\right)^2 + \frac{g^2}{4a^4}\right), \quad k = 1, 2, \dots, \quad p = 0, 1, 2, \dots, \quad (3.15)$$

и систему собственных функций

$$\Phi_{2kp}(x,y,z) := v_{21p}(z)u_k(x,y), \quad k = 1, 2, \dots, \quad p = 0, 1, 2, \dots, \quad (3.16)$$

где $u_k(x,y)$ — собственные функции задачи (2.2).

При этом функции (3.16) образуют ортогональный базис как в пространстве $L_2(\Omega_2; \rho_{2,0}(z))$ со скалярным произведением

$$(\Phi,\Psi)_{L_2(\Omega_2;\rho_{2,0}(z))} := \int_{\Omega_2} \rho_{2,0}(z) \Phi(x,y,z) \overline{\Psi(x,y,z)} d\Omega_2,$$

так и в пространстве $H^1(\Omega_2; \rho_{2,0}(z))$ с квадратом нормы

$$\|\Phi\|_{H^1(\Omega_2;\rho_{2,0}(z))}^2 := \int_{\Omega_2} \rho_{2,0}(z) |\nabla\Phi|^2 d\Omega_2 + \Big| \int_{\Omega_2} \rho_{2,0}(z) \Phi \, d\Omega_2 \Big|^2,$$

эквивалентной стандартной норме пространства $H^1(\Omega_2)$.

Если для задачи (3.7) выполнены свойства ортонормировки

$$(v_{21p}, v_{21q})_{L_2([0,h_2];\rho_{2,0}(z))} = \delta_{pq}, \quad (v_{21p}, v_{21q})_{H^1([0,h_2];\rho_{2,0}(z))} = \nu_p \delta_{pq},$$

а также свойства ортонормировки (2.5) для собственных функций задачи (2.2), то для функций (3.16) выполнены свойства ортонормировки

$$(\Phi_{2kp}, \Phi_{2jl})_{L_2(\Omega_2; \rho_{2,0}(z))} = \delta_{kj} \delta_{pl}, \quad (\Phi_{2kp}, \Phi_{2jl})_{H^1(\Omega_2; \rho_{2,0}(z))} = \lambda_{kp} a^{-2} \delta_{kj} \delta_{pl},$$

Доказательство. Оно проводится по общей схеме, изложенной, например, в [7], с. 397–398.

Итак, собственные функции (3.16) и собственные значения (3.15) дают решения задачи о собственных колебаниях баротропного газа в области Ω_2 с неподвижной нижней границей Γ .

Что касается вспомогательной задачи (3.1)– (3.3), то известно (см., например, [8], § 3.1, а также соответствующие статьи по этой тематике), что она равносильна операторному уравнению

$$B_{\sigma}\zeta = \lambda C\zeta, \quad \zeta \in \mathcal{D}(B_{\sigma}) \subset L_{2,\Gamma},$$

$$(3.17)$$

где C — компактный положительный оператор, а оператор B_{σ} введен в (1.7). Для описания свойств решений задачи (3.17) и соответственно задачи (3.1)–(3.3) введем подпространство $H^1_{h,\Gamma}(\Omega)$ тех пар $\Phi := (\Phi_1; \Phi_2)$ гармонических функций из $H^1(\Omega_1)$ и $H^1(\Omega_2)$, для которых выполнены свойства (см. (3.1)–(3.2)):

$$\begin{split} H^1_{h,\Gamma}(\Omega) &:= \Big\{ (\Phi_1(x,y,z); \Phi_2(x,y,z)) : \Delta \Phi_1 = 0 \ (\mathbf{B} \ \Omega_1), \quad \frac{\partial \Phi_1}{\partial n} = 0 \ (\mathbf{Ha} \ S_1), \\ \Delta \Phi_2 &= 0 \ (\mathbf{B} \ \Omega_2), \quad \frac{\partial \Phi_2}{\partial n} = 0 \ (\mathbf{Ha} \ S_2), \quad \frac{\partial \Phi_1}{\partial z} = \frac{\partial \Phi_2}{\partial z} =: \zeta \ (\mathbf{Ha} \ \Gamma), \\ \int_{\Gamma} \zeta d\Gamma = 0, \quad \int_{\Gamma} \Phi_1 d\Gamma = \int_{\Gamma} \Phi_2 d\Gamma = 0 \Big\}, \end{split}$$

а норма введена по закону

$$\|\Phi\|_{H^{1}_{h,\Gamma}(\Omega)}^{2} := \rho_{1} \int_{\Omega_{1}} |\nabla\Phi_{1}|^{2} d\Omega_{1} + \rho_{2,0}(0) \int_{\Omega_{2}} |\nabla\Phi_{2}|^{2} d\Omega_{2}, \ \forall \Phi = (\Phi_{1}; \Phi_{2}) \in H^{1}_{h,\Gamma}(\Omega).$$

Лемма 3. Собственные функции вспомогательной задачи (3.1)-(3.3) имеют вид

$$\Phi_{1k}(x,y,z) = v_{1k}(z)u_k(x,y), \quad \Phi_{2k}(x,y,z) = v_{2k}(z)u_k(x,y), \quad k = 1, 2, \dots, \quad (3.18)$$

а собственные значения выражаются формулой (3.9). Если функции $\zeta_k(x,y) = \eta_k u_k(x,y), \ \eta_k = (\partial v_{1k}/\partial z)|_{z=0} = (\partial v_{2k}/\partial z)|_{z=0},$ ортонормированы по форме оператора C, то имеют место следующие условия ортономировки:

$$\begin{cases} (C\zeta_k,\zeta_j)_{L_{2,\Gamma}} = (\Phi_k,\Phi_j)_{H^1_{h,\Gamma}(\Omega)} = \delta_{kj}, \quad \zeta_k := \frac{\partial \Phi_{1k}}{\partial z}\Big|_{z=0} = \frac{\partial \Phi_{2k}}{\partial z}\Big|_{z=0}, \\ (B_{\sigma}\zeta_k,\zeta_j)_{L_{2,\Gamma}} = (\zeta_k,\zeta_j)_{B_{\sigma}} = \int_{\Gamma} \nabla \zeta_k \cdot \nabla \zeta_j d\Gamma = \lambda_k^{(1)} \delta_{kj}, \quad k,j = 1, 2, \dots, .\end{cases}$$

При этом функции $\Phi_k := \{\Phi_{1k}; \Phi_{2k}\}$ образуют ортонормированный базис в $H^1_{h,\Gamma}(\Omega)$, а функции $\zeta_k(x,y)$ — ортогональный базис в энергетическом пространстве $H_{B_{\sigma}}$ оператора B_{σ} , а также в пространстве $L_{2,\Gamma}$.

Доказательство. Оно в общей ситуации, т.е. для произвольного сосуда и криволинейной границы Г, изложено, например, в [8], с. 165, а также в [15], с. 244–248, а утверждения данной леммы следуют как частный случай, когда сосуд цилиндрический, граница раздела Г плоская и горизонтальная, а верхнее и нижнее основания контейнера жесткие (неупругие). □

Таким образом, собственные функции (3.18) первой вспомогательной задачи (3.1)–(3.3) дают решения проблемы собственных колебаний двух несжимаемых идеальных капиллярных жидкостей (плотностей ρ_1 и $\rho_{2,0}(0)$ соответственно) в цилиндрическом сосуде с горизонтальной границей раздела между ними. Формулы (3.8), (3.18) показывают, в частности, что эти решения имеют характер пограничного слоя в окрестности Γ : они экспоненциально затухают при отходе вдоль нормали к Γ (т.е. при увеличении либо уменьшении z относительно точки $z_0 = 0$).

4. Общие свойства решений основной спектральной задачи

Вернемся к проблеме (2.3)–(2.4) при $\mu = \mu_k$, т.е. к задаче

$$\frac{d^2 v_1}{dz^2} - \mu_k v_1 = 0 \quad (-h_1 < z < 0), \quad \frac{dv_1}{dz} = 0 \quad (z = -h_1), \tag{4.1}$$

$$-\rho_{2,0}^{-1}(z)\frac{d}{dz}\left(\rho_{2,0}(z)\frac{dv_2}{dz}\right) + \mu_k v_2 = \lambda a^{-2}v_2 \quad (0 < z < h_2), \quad \frac{dv_2}{dz} = 0 \quad (z = h_2), \quad (4.2)$$

$$\frac{dv_1}{dz} = \frac{dv_2}{dz} =: \eta \ (z=0), \quad \lambda_k(B_\sigma)\eta = \lambda(\rho_1 v_1(0) - \rho_{2,0}(0)v_2(0)), \quad k=1,2,\dots, \ (4.3)$$

и обсудим общие свойства ее решений при любом k = 1, 2, ...

Как уже упоминалось выше (см. (2.6)), собственные значения задач (4.1)–(4.3) положительны. Покажем, что при любом $k \in \mathbb{N}$ задача (4.1)–(4.3) имеет дискретный спектр, состоящий из однократных собственных значений с предельной точкой $\lambda = +\infty$. Попутно установим и другие свойства решений этой задачи. При этом применим операторный подход, развитый в общей ситуации в работе [6], см. также [3].

1°. Заметим сначала, что по элементу $\eta \in \mathbb{R}$ решение вспомогательной задачи

$$\frac{d^2 v_1}{dz^2} - \mu_k v_1 = 0 \quad (-h_1 < z < 0), \quad \frac{dv_1}{dz} = 0 \quad (z = -h_1), \quad \frac{dv_1}{dz} = \eta \quad (z = 0), \quad (4.4)$$

находится однозначно и имеет вид (см. (3.8))

$$v_1(z) = \eta ch[\alpha_k(z+h_1)]/(\alpha_k sh(\alpha_k h_1)) =: T_{1k}\eta.$$
 (4.5)

Тогда

$$v_1(0) = \alpha_k^{-1} \operatorname{cth}(\alpha_k h_1) \eta =: C_{1k} \eta.$$
 (4.6)

Здесь оператор T_{1k} действует из \mathbb{R} в подпространство решений задачи (4.4), а $C_{1k} := \gamma_1 T_{1k}$ ($\gamma_1 v_1(z) := v_1(0)$) — одномерный оператор, действующий в \mathbb{R} .

2°. Представим теперь функцию $v_2(z)$ из (4.2), (4.3) в виде суммы

$$v_2(z) = v_{21}(z) + v_{22}(z), (4.7)$$

где $v_{22}(z)$ — решение задачи

$$-\rho_{2,0}^{-1}(z)\frac{d}{dz}\left(\rho_{2,0}(z)\frac{dv_{22}}{dz}\right) + \mu_k v_{22} = 0 \quad (0 < z < h_2),$$
$$\frac{dv_{22}}{dz} = 0 \quad (z = h_2), \quad \frac{dv_{22}}{dz} = \eta \quad (z = 0),$$

которую с учетом (1.1) легко привести к виду

$$\frac{d^2 v_{22}}{dz^2} - \frac{g}{a^2} \frac{dv_{22}}{dz} - \mu_k v_{22} = 0 \quad (0 < z < h_2), \quad \frac{dv_{22}}{dz} = 0 \quad (z = h_2), \quad \frac{dv_{22}}{dz} = \eta \quad (z = 0).$$

Тогда

$$v_{22}(z) = -\alpha_k^{-2} e^{\delta z} [(\delta + d_k \operatorname{cth}(d_k h_2)) \operatorname{ch}(d_k z) - (d_k + \delta \operatorname{cth}(d_k h_2)) \operatorname{sh}(d_k z)]\eta =: T_{2k}\eta, \quad (4.8)$$
$$v_{22}(0) = -\alpha_k^{-2} [\delta + d_k \operatorname{cth}(d_k h_2)]\eta =: -C_{2k}\eta. \quad (4.9)$$

где

$$\delta := g/(2a^2), \quad D_k := \delta^2 + \mu_k > 0, \quad d_k := D_k^{1/2}.$$

3°. Из (4.2)–(4.3) и (4.7), следует, что функция $v_{21}(z)$ должна быть решением задачи

$$a^{2}A_{k}v_{21}(z) := -\rho_{2,0}^{-1}(z)\frac{d}{dz}\left(\rho_{2,0}(z)\frac{dv_{21}}{dz}\right) + \mu_{k}v_{21} = \lambda(v_{21}(z) + v_{22}(z)),$$

где оператор A_k , подобно оператору A из (3.13), (3.14), можно считать заданным на множестве (3.13) и действующим в гильбертовом пространстве $L_2([0, h_2]; \rho_{2,0}(z))$ со скалярным произведением (3.12). Этот оператор, после расширения по Фридрихсу, самосопряжен и положительно определен, а его энергетическое пространство $H_k^1([0, h_2]; \rho_{2,0}(z))$ имеет норму, эквивалентную стандартной норме пространства $H^1([0, h_2])$:

$$\|v\|_{H^1_k([0,h_2];\rho_{2,0}(z))}^2 := \int_0^{h_2} \rho_{2,0}(z) [|v'(z)|^2 + \mu_k |v(z)|^2] dz \ge \mu_k \|v\|_{L_2([0,h_2];\rho_{2,0}(z))}^2.$$

4°. Перепишем уравнения задачи (4.1)–(4.3) с учетом введенных операторов в виде системы двух уравнений

$$a^{2}A_{k}v_{21}(z) = \lambda(v_{21}(z) + T_{2k}\eta), \quad \lambda_{k}(B_{\sigma})\eta = \lambda(-\rho_{2,0}(0)\gamma_{2}v_{21}(z) + C_{k}\eta), \quad (4.10)$$

$$C_k = \rho_1 C_{1k} + \rho_{2,0}(0) C_{2k}, \quad \gamma_2 v_{21}(z) := v_{21}(0), \tag{4.11}$$

относительно пары неизвестных: $v_{21}(z) \in H_k^1([0, h_2]; \rho_{2,0}(z))$ и $\eta \in \mathbb{R}$.

Осуществим еще замену искомой функции по формуле

$$A_k^{1/2} v_{21}(z) =: w_{21}(z), \tag{4.12}$$

а затем, применяя оператор $A_k^{1/2}$ к обеим частям (4.10), приходим к спектральной задаче

$$\begin{pmatrix} a^2 A_k & 0\\ 0 & \lambda_k(B_\sigma) \end{pmatrix} \begin{pmatrix} w_{21}(z)\\ \eta \end{pmatrix} = \lambda \begin{pmatrix} I & B_{12k}\\ B_{21k} & C_k \end{pmatrix} \begin{pmatrix} w_{21}(z)\\ \eta \end{pmatrix}, \ w_{21}(z) \in \mathcal{D}(A_k), (4.13)$$

$$B_{12k}\eta := A_k^{1/2} T_{2k}\eta, \quad B_{21k}w_{21}(z) := -\rho_{2,0}(0)\gamma_2 A_k^{-1/2}w_{21}(z).$$
(4.14)

Введем теперь гильбертово пространство $L_{2,k} = L_2([0,h_2];\rho_{2,0}(z)) \oplus \mathbb{R}$ с квадратом нормы

$$\|\psi\|_{L_{2,k}}^2 := \|w_{21}(z)\|_{L_2([0,h_2];\rho_{2,0}(z))}^2 + |\eta|^2, \quad \psi := (w_{21}(z);\eta)^{\tau}, \tag{4.15}$$

(где символом τ обозначена операция транспонирования, в данном случае векторстроки), и операторные матрицы

$$\mathcal{A}_k := \operatorname{diag}(a^2 A_k; \lambda_k(B_{\sigma})), \ \mathcal{D}(\mathcal{A}_k) = \mathcal{D}(A_k) \oplus \mathbb{R}, \ \mathcal{J}_k := \begin{pmatrix} I & B_{12k} \\ B_{21k} & C_k \end{pmatrix}, \ \mathcal{D}(\mathcal{J}_k) = L_{2,k}$$

Лемма 4. Оператор $\mathcal{J}_k : L_{2,k} \to L_{2,k}$ является ограниченным самосопряженным и притом положительно определенным оператором, действующим в пространстве $L_{2,k}$.

Доказательство. Непосредственный подсчет показывает, с учетом определений (4.5), (4.6), (4.8), (4.9), (4.11), (4.14) и замены (4.12), что квадратичная форма оператора \mathcal{J}_k в комплексном пространстве $L_{2,k}$ равна

$$(\mathcal{J}_{k}\psi,\psi)_{L_{2,k}} = \begin{pmatrix} I & B_{12k} \\ B_{21k} & C_{k} \end{pmatrix} \begin{pmatrix} w_{21}(z) \\ \eta \end{pmatrix} \cdot \begin{pmatrix} w_{21}(z) \\ \eta \end{pmatrix} = \|v_{21}(z)\|_{H^{1}([0,h_{2}];\rho_{2,0}(z))}^{2} + 2\operatorname{Re}(v_{21}(z),v_{22}(z))_{H^{1}([0,h_{2}];\rho_{2,0}(z))} + \rho_{1}v_{1}(0)v_{1}'(0) - \rho_{2,0}(0)v_{22}(0)v_{22}'(0) = \\ = \int_{0}^{h_{2}} \rho_{2,0}(z)[|v_{2}'(z)|^{2} + \mu_{k}|v_{2}(z)|^{2}]dz + \rho_{1}\int_{-h_{1}}^{0}[|v_{1}'(z)|^{2} + \mu_{k}|v_{1}(z)|^{2}]dz. \quad (4.16)$$

Отсюда следует, что оператор \mathcal{J}_k не только неотрицателен в $L_{2,k}$, но и положителен, а так как его можно представить в виде суммы единичного в $L_{2,k}$ оператора и компактного (в силу одномерности \mathbb{R} или \mathbb{C}), то \mathcal{J}_k — самосопряженный положительно определенный оператор, заданный на всем $L_{2,k}$.

ISSN 0203-3755 Динамические системы, том 2(30), №1-2(2012)

13

Следствие 1. Норма, определяемая квадратичной формой оператора \mathcal{J}_k по закону

$$\|\psi\|_{\mathcal{J}_k}^2 := (\mathcal{J}_k \psi, \psi), \quad \forall \psi \in L_{2,k},$$

эквивалентна стандартной норме (4.15).

Опираясь на установленные факты, сформулируем основные утверждения о свойствах решений задач (4.1)–(4.3).

Теорема 1. При любом k = 1, 2, ... задача (4.1)–(4.3) имеет дискретный спектр, состоящий из положительных однократных собственных значений $\{\lambda_{kp}\}_{p=0}^{\infty}$ с предельной точкой $\lambda = +\infty$. Отвечающая им система собственных элементов $\{\psi_{kp}\}_{p=0}^{\infty}, \psi_{kp} = (w_{21kp}(z); \eta_{kp})^{\tau}$, образует ортогональный по форме оператора \mathcal{J}_k базис в пространстве $L_{2,k}$, а также в энергетическом пространстве $H_{\mathcal{A}_k} \subset L_{2,k}$ с квадратом нормы

$$\|\psi\|_{\mathcal{A}_k}^2 := a^2 \int_0^{h_2} \rho_{2,0}(z) [|w_{21}'(z)|^2 + \mu_k |w_{21}(z)|^2] dz + \lambda_k (B_\sigma) |\eta|^2, \ k = 1, 2, \dots .$$
(4.17)

Собственные элементы ψ_{kp} могут быть выбраны удовлетворяющими следующим условиям ортонормировки:

$$(\mathcal{J}_k\psi_{kp},\psi_{kl})_{L_{2,k}}=\delta_{pl},\quad (\mathcal{A}_k\psi_{kp},\psi_{kl})_{L_{2,k}}=(\psi_{kp},\psi_{kl})_{\mathcal{A}_k}=\lambda_{kp}\delta_{pl}.$$

Доказательство. Оно основано на том, что энергетическое пространство $H_{\mathcal{A}_k}$ (в силу теоремы вложения Соболева) компактно вложено в пространство с нормой (4.16), так как норма (4.17) эквивалентна стандартной норме пространства $H^1([0, h_2]) \oplus \mathbb{R}$, а норма (4.16) в силу следствия 1 эквивалентна норме (4.15). \Box

Последующие утверждения получаются из доказанного факта дискретности спектра задачи (4.13), т.е. задачи

$$\mathcal{A}_k \psi = \lambda \mathcal{J}_k \psi, \quad \psi \in \mathcal{D}(\mathcal{A}_k) \subset L_{2,k}, \tag{4.18}$$

эквивалентной ей задачи

$$\mathcal{A}_{k}^{-1}v = \mu \mathcal{J}_{k}^{-1}v, \quad v = \mathcal{J}_{k}\psi, \quad \mu = \lambda^{-1},$$
(4.19)

и соответствующих вариационных принципов для собственных значений этих задач.

Теорема 2. Собственные значения $\{\lambda_{kp}\}_{p=0}^{\infty}$ задачи (4.1)–(4.3) могут быть найдены как последовательные минимумы вариационного отношения

$$F_{1k}(v_1; v_2) := \frac{a^2 \int_0^{h_2} \rho_{2,0}(z) |\Delta_{0,k} v_2|^2 dz + \lambda_k(B_{\sigma}) |v_1'(0)|^2}{\rho_1 \int_{-h_1}^0 [|v_1'(z)|^2 + \mu_k |v_1(z)|^2] dz + \int_0^{h_2} \rho_{2,0}(z) [|v_2'(z)|^2 + \mu_k |v_2(z)|^2] dz},$$
(4.20)

$$\Delta_{0,k}v_2(z) := -\rho_{2,0}^{-1}(z)\frac{d}{dz}\Big(\rho_{2,0}(z)\frac{dv_2}{dz}\Big) + \mu_k v_2(z),$$

а числа $\mu_{kp} = 1/\lambda_{kp}$ — как последовательные максимумы вариационного отношения (см. (2.6))

$$F_{2k}(v_1; v_2) := \frac{a^{-2} \int_0^{h_2} \rho_{2,0}(z) |v_2(z)|^2 dz + \lambda_k^{-1}(B_{\sigma}) |\rho_1 v_1(0) - \rho_{2,0}(0) v_2(0)|^2}{\rho_1 \int_{-h_1}^0 [|v_1'(z)|^2 + \mu_k |v_1(z)|^2] dz + \int_0^{h_2} \rho_{2,0}(z) [|v_2'(z)|^2 + \mu_k |v_2(z)|^2] dz}.$$
(4.21)

Доказательство. Вариационное отношение (4.20) следует из (4.18):

$$\lambda = (\mathcal{A}_k \psi, \psi)_{L_{2,k}} / (\mathcal{J}_k \psi, \psi)_{L_{2,k}},$$

если вернуться к исходным обозначениям по формулам (4.16), (4.12).

Соответственно вариационное отношение (4.21) следует из (4.19):

$$\mu = (\mathcal{A}_{k}^{-1}v, v)_{L_{2,k}} / (\mathcal{J}_{k}^{-1}v, v)_{L_{2,k}} = (\mathcal{A}_{k}^{-1}\mathcal{J}_{k}\psi, \mathcal{J}_{k}\psi)_{L_{2,k}} / (\psi, \mathcal{J}_{k}\psi)_{L_{2,k}}.$$

Введем теперь по решениям задачи (4.1)–(4.3) и задачи (2.2) с условиями ортонормировки

$$(\psi_k, \psi_j)_{H^1_\Gamma} = \delta_{kj}, \quad (\psi_k, \psi_j)_{L_{2,\Gamma}} = \mu_k^{-1} \delta_{kj}, \quad k, j \in \mathbb{N},$$

вместо (2.5) (для функций $u_k(x,y)$) и соотношений

$$\rho_{1} \int_{-h_{1}}^{0} [v_{1kp}'(z)v_{1kl}'(z) + \mu_{k}v_{1kp}(z)v_{1kl}(z)]dz + \\ + \int_{0}^{h_{2}} \rho_{2,0}(z)[v_{2kp}'(z)v_{2kl}'(z) + \mu_{k}v_{2kp}(z)v_{2kl}(z)]dz = \delta_{pl},$$

$$a^{2} \int_{0}^{h_{2}} \rho_{2,0}(z)(\Delta_{0,k}v_{2kp})(\Delta_{0,k}v_{2kl})dz + \lambda_{k}(B_{\sigma})v_{1kp}'(0)v_{1kl}'(0) = \lambda_{kp}\delta_{pl},$$

$$a^{-2} \int_{0}^{h_{2}} \rho_{2,0}(z)v_{2kp}(z)v_{2kl}(z)dz + \\ + \lambda_{k}^{-1}(B_{\sigma})(\rho_{1}v_{1kp}(0) - \rho_{2,0}(0)v_{2kp}(0))(\rho_{1}v_{1kl}(0) - \rho_{2,0}(0)v_{2kl}(0)) = \lambda_{kp}^{-1}\delta_{pl}, \quad (4.22)$$

которые выполняются для решений задачи (4.1)-(4.3), набор функций

$$\Phi_{1kp}(x, y, z) := v_{1kp}(z)u_k(x, y),$$

$$\Phi_{2kp}(x, y, z) := v_{2kp}(z)u_k(x, y), \quad k = 1, 2, \dots, \quad p = 0, 1, \dots.$$
(4.23)

ISSN 0203-3755 Динамические системы, том 2(30), №1-2(2012)

Теорема 3. Функции (4.23) образуют ортогональный базис в пространстве $H^1_{\Gamma}(\Omega)$ решений исходной задачи (1.2)–(1.6),

$$H^{1}_{\Gamma}(\Omega) := \Big\{ \Phi_{1}(x, y, z) := (\Phi_{1}(x, y, z); \Phi_{2}(x, y, z)) : \Delta \Phi_{1} = 0 \ (e \ \Omega_{1}), \ \frac{\partial \Phi_{1}}{\partial n} = 0 \ (ha \ S_{1}), \\ \frac{\partial \Phi_{2}}{\partial n} = 0 \ (ha \ S_{2}), \ \frac{\partial \Phi_{1}}{\partial z} = \frac{\partial \Phi_{2}}{\partial z} =: \zeta \ (ha \ \Gamma), \ \int_{\Gamma} \zeta d\Gamma = 0, \ \int_{\Gamma} \Phi_{1} d\Gamma = 0, \ \int_{\Gamma} \Phi_{2} d\Gamma = 0 \Big\},$$

с квадратом нормы (см. (1.9))

$$\|\Phi\|_{H^{1}_{\Gamma}(\Omega)}^{2} := \rho_{1} \int_{\Omega_{1}} |\nabla\Phi_{1}|^{2} d\Omega_{1} + \int_{\Omega_{2}} \rho_{2,0}(z) |\nabla\Phi_{2}|^{2} d\Omega_{2},$$

а также в пространстве $L_2(\Omega_2; \Gamma)$ с квадратом нормы

$$\|\Phi\|_{L_2(\Omega_2;\Gamma)}^2 := a^{-2} \int_{\Omega_2} \rho_{2,0}(z) |\Phi_2|^2 d\Omega_2 + \|B_{\sigma}^{-1/2}(\rho_1 \Phi_1 - \rho_{2,0}(0)\Phi_2)\|_{L_{2,\Gamma}}^2.$$

При этом имеют место следующие свойства ортонормировки

$$(\Phi_{kp}, \Phi_{jl})_{H^1_{\Gamma}(\Omega)} = \delta_{kj} \delta_{pl}$$

При условиях ортонормировки (2.5) и (4.22) имеем: $(\Phi_{kp}, \Phi_{jl})_{L_2(\Omega_2;\Gamma)} = \lambda_{kp}^{-1} \delta_{kj} \delta_{pl}.$

Доказательство. Оно проводится так же, как и в лемме 2, т.е. на основе [7], с. 397-398.

Таким образом, при любом $k \in \mathbb{N}$ задача (4.1)–(4.3) имеет дискретный спектр и отвечающую ему систему собственных функций, свойства которых отражены в теоремах 1 и 2, а свойства решений исходной спектральной задачи (1.2)–(1.6) — в теореме 3.

5. Исследование характеристического уравнения спектральной задачи

Опираясь на доказанные выше общие факты, перейдем к непосредственному вычислению собственных значений λ спектральной задачи (4.1)–(4.3), получению и анализу соответствующего характеристического уравнения для этих собственных значений при любом k = 1, 2, ...

Прежде всего, решение уравнения (4.1), удовлетворяющее граничному условию при $z = -h_1$, имеет вид (см. (3.8)) $v_1(z) = b_1 ch[\alpha_k(z+h_1)], \alpha_k = \mu_k^{1/2}$, где b_1 произвольная постоянная. Далее, с учетом (1.1) из (4.2) приходим к соотношениям

$$v_2''(z) - (g/a^2)v_2'(z) + \nu v_2(z) = 0, \quad 0 < z < h_2, \quad v_2'(h_2) = 0, \quad \nu = \lambda/a^2 - \mu_k.$$
(5.1)

Общее решение однородного уравнения (5.1) имеет вид

$$v_2(z) = e^{\delta z} [b_2 \cos(\gamma z) + b_3 \sin(\gamma z)], \quad \gamma^2 = \nu - \delta^2 > 0, \quad \delta := g/(2a^2),$$
 (5.2)

где b_2 и b_3 — произвольные постоянные.

Наконец, граничное условие в (5.1) и условия (4.3) приводят к следующей системе линейных однородных уравнений относительно неизвестных b_1 , b_2 и b_3 :

$$\begin{cases} b_2[\delta\cos(\gamma h_2) - \gamma\sin(\gamma h_2)] + b_3[\delta\sin(\gamma h_2) + \gamma\cos(\gamma h_2)] = 0, \\ b_1\alpha_k \operatorname{sh}(\alpha_k h_1) - b_2\delta - b_3\gamma = 0, \\ b_1[\lambda_k(B_\sigma)\alpha_k \operatorname{sh}(\alpha_k h_1) - \lambda\rho_1 \operatorname{ch}(\alpha_k h_1)] + b_2\lambda\rho_{2,0}(0) = 0. \end{cases}$$

Приравнивая нулю определитель этой системы, приходим к характеристическому уравнению для нахождения собственных значений λ :

$$-\gamma [\delta \cos(\gamma h_2) - \gamma \sin(\gamma h_2)] \cdot [\lambda_k (B_\sigma) \alpha_k - \lambda \rho_1 \operatorname{cth}(\alpha_k h_1)] + [\delta \sin(\gamma h_2) + \gamma \cos(\gamma h_2)] \{\alpha_k \lambda \rho_{2,0}(0) + \delta [\lambda_k (B_\sigma) \alpha_k - \lambda \rho_1 \operatorname{cth}(\alpha_k h_1)] \} = 0, \ k = 1, 2, \dots, \quad (5.3)$$

$$\alpha_k = \mu_k^{1/2}, \quad \delta = g/(2a^2), \quad \gamma^2 = \nu - \delta^2 = \lambda a^{-2} - \mu_k - \delta^2 > 0,$$

$$\lambda_k(B_\sigma) = \sigma \mu_k + g(\rho_1 - \rho_{2,0}(0)).$$
 (5.4)

После простых преобразований из (5.3), (5.4) получаем уравнение

$$\nu \sin(\gamma h_2) [\lambda_k(B_\sigma)\alpha_k - \lambda \rho_1 \operatorname{cth}(\alpha_k h_1)] + \lambda \alpha_k \rho_{2,0}(0) [\delta \sin(\gamma h_2) + \gamma \cos(\gamma h_2)] = 0.$$
 (5.5)

Нетрудно видеть, что для решений этого уравнения $\sin(\gamma h_2) \neq 0$, поскольку предположение $\sin(\gamma h_2) = 0$ приводит к выводу, что $\cos(\gamma h_2) = 0$.

Для удобства последующих рассмотрений выберем в качестве характерного размера задачи (4.1)–(4.3) высоту h_2 столба газа, а также какие-либо другие характерные величины для времени и других физических параметров гидросистемы. Тогда безразмерная высота столба газа будет равна 1, а другие параметры в (4.1)–(4.3) можно считать безразмерными.

Учитывая еще свойство $\sin(\gamma h_2) \neq 0$, перепишем уравнение (5.5) с учетом (5.4) в безразмерном виде

$$\gamma \operatorname{ctg} \gamma + \delta = \left[-\frac{\lambda_k(B_{\sigma})}{a^2 \rho_{2,0}(0)} (\gamma^2 + \delta^2 + \alpha_k^2)^{-1} + \frac{\rho_1 \operatorname{cth}(\alpha_k h_1)}{\rho_{2,0}(0) \alpha_k} \right] (\delta^2 + \gamma^2)$$

=: $f_k(\gamma^2), \ k = 1, 2, \dots$ (5.6)

Здесь правая часть $f_k(\gamma^2)$ как функция переменной γ является четной и асимпотически близкой к параболе при $\gamma \to \infty$. Так как левая часть (5.6) также является четной функцией γ , то корни уравнения (5.6) расположены симметрично относительно начала координат и потому далее можно рассматривать лишь его положительные корни.

Из графического рассмотрения уравнения (5.6), а также из равносильного ему уравнения

$$\operatorname{ctg}\gamma = -\frac{\delta}{\gamma} + \frac{1}{\gamma}f_k(\gamma^2), \quad k = 1, 2, \dots,$$

приходим к следующим выводам.

1°. При любом
 $k=1,2,\ldots$ задача (4.1)–(4.3) имеет счетное множество собственных значений

$$\lambda_{kp} := a^2 (\gamma_{kp}^2 + \mu_k + g^2/(4a^4)), \quad \gamma_{kp} = \pi p + \beta_{kp}, \quad 0 < \beta_{kp} < \pi, \quad p = 1, 2, \dots, \quad (5.7)$$

отвечающих акустическим колебаниям в гидросистеме "идеальная жидкостьбаротропный газ".

2°. При фиксированном k и $p \to \infty$ имеют место свойства $\beta_{kp} \to 0$, то есть $\lambda_{kp} = \lambda_{kp}^{(2)} [1 + o(1)] \quad (p \to \infty)$, где $\lambda_{kp}^{(2)}$ — квадраты частот акустических колебаний газа с неподвижной границей раздела Γ (см. (3.15)).

3°. При фиксированном p и $k \to \infty$ из (5.7) и (3.15) следует также свойство $\lambda_{kp} = \lambda_{kp}^{(2)}[1+o(1)] \ (k \to \infty, \quad \forall p = 1, 2, ...),$ так как $\mu_k \to \infty$ при $k \to \infty$ (см. п. 2). Таким образом, $\lambda_{kp} = \lambda_{kp}^{(2)}[1+o(1)], \quad k, p \to \infty.$

4°. Рассмотрим теперь промежуток $[0, \pi]$, где также может находиться корень уравнения (5.6), которое выведено при условии, что $\gamma^2 = \nu - \delta^2 > 0$ (см. (5.2)). Если, в частности, выполнено условие (см. (5.6))

$$1 + \delta > -\frac{\lambda_k(B_{\sigma})\delta^2}{a^2\rho_{2,0}(0)}(\delta^2 + \alpha_k^2)^{-1} + \frac{\rho_1 \operatorname{cth}(\alpha_k h_1)\delta^2}{\rho_{2,0}(0)\alpha_k},$$

то такой (единственный) корень имеется на этом промежутке. В противном случае вместо (5.6) следует рассмотреть уравнение

$$\delta + \xi \operatorname{cth} \xi = \left[-\frac{\lambda_k(B_\sigma)}{a^2 \rho_{2,0}(0)} (\alpha_k^2 + \delta^2 - \xi^2)^{-1} + \frac{\rho_1 \operatorname{cth}(\alpha_k h_1)}{\rho_{2,0}(0) \alpha_k} \right] (\delta^2 - \xi^2)$$

=: $r_k(\xi^2), \ k = 1, 2, \dots, \quad (5.8)$

которое получается формальной заменой γ^2 на
— ξ^2 и соответствует случаю $\nu-\delta^2=-\xi^2\leq 0$ в (5.2).

Обозначим через γ_{k_0} корень уравнения (5.6) на промежутке $[0, \pi]$, а через ξ_{k_0} — соответствующий корень уравнения (5.8). Тогда этим корням (одному либо другому) отвечают собственные значения $\lambda_{k0} = a^2(\gamma_{k_0}^2 + \mu_k + g^2/(4a^4)), k = 1, 2, ...,$ либо

$$\lambda_{k0} = a^2 (-\xi_{k_0}^2 + \mu_k + g^2/(4a^4)), \quad k = 1, 2, \dots$$
(5.9)

5°. При $a^2 \to \infty$ собственные значения (5.9), соответствующие корням уравнения (5.8), имеют асимпотическое поведение (см. (3.9))

$$\lambda_{k0} = \lambda_k^{(1)} [1 + o(1)] \quad (a^2 \to \infty),$$
(5.10)

т.е. отвечают решениям первой вспомогательной задачи (3.5)–(3.6) п. 3, а именно, случаю, когда обе жидкостные среды несжимаемы и имеют плотности ρ_1 и $\rho_{2,0}(0)$ соответственно.

Рис. 1. Графическое решение уравнения (5.6) при $\mu = 1$.

Для доказательства свойства (5.10) рассмотрим уравнение (5.8) с искомой переменной ξ , которое перепишем в виде

$$(\delta + \xi \operatorname{cth} \xi) a^{2} (\alpha_{k}^{2} + \delta^{2} - \xi^{2}) \alpha_{k} \rho_{2,0}(0) + [\lambda_{k} (B_{\sigma}) - a^{2} (\alpha_{k}^{2} + \delta^{2} - \xi^{2}) \rho_{1} \operatorname{cth} (\alpha_{k} h_{1})] (\delta^{2} - \xi^{2}) = 0,$$

$$\delta = g/(2a^{2}) = O(a^{-2}) \quad (a \to \infty), \quad (5.11)$$

и будем искать его корни с асимптотическим поведением $\xi_{k0} = \alpha_k + \beta_{k0} a^{-2} + O(a^{-4}), a \to \infty$. Подстановка ξ_{k0} в (5.11) и приравнивание коэффициентов при одинаковых степенях a^{-2} приводит к формуле $\beta_{k0} = -\lambda_k^{(1)}/(2\alpha_k), k = 1, 2, \ldots$. Отсюда и из (5.9) следует асимпотическая формула (5.10).

6. Численные расчеты

Графическое решение уравнения (5.6) для $\gamma^2 > 0$ представлено на рис. 1. Здесь видно, что решений γ_p счетное множество и при увеличении номера p отклонение от значения πp уменьшается. График смещений частиц жидкости (при $-1 < z \leq 0$) и частиц газа (при 0 < z < 1) для разных значений γ_p представлен на рис. 2. Из рис. 2 видно, что смещение частиц жидкости увеличивается при удалении от нижнего основания цилиндра и при этом зависит от координаты z как гиперболический синус; при этом графики, описывающие смещение частиц газа (пунктирные кривые) имеют ярко выраженный периодический характер и с увеличением μ их период уменьшается. Графики на рис. 3 (полученные для нулевой моды колебаний, т.е. γ_0 , при фиксированных μ) свидетельствует о том, что смещение частиц газа уменьшается при удалении от границы раздела сред и достигает нулевой отметки на верхнем основании цилиндра. Следует отметить, что при увеличении μ кривая смещения приближается к оси Oz: чем больше значение μ , тем круче становится кривая, изображающая смещение частиц газа.

Алгоритм нахождения значений безразмерного параметра γ_p^+ , p = 0, 1, 2, 3, ...для заданного значения спектрального параметра μ_k , $k \ge 1$, задачи (2.2) (в поперечном сечении цилиндра) реализован в виде компьютерной C++-программы.

Для двух случаев (малое ускорение и соизмеримое с g = 9.81), представляющих практический интерес, вычислялись и сравнивались значения γ_p^+ и β_p (см. формулы (5.7)), выявлялось их асимптотическое поведение при $p \gg 1$. При оценке количественной близости вычисленного значения γ_p^+ и величины πp анализировались как абсолютная, так и относительная погрешности β_p . Численные расчеты выполнялись с двойной точностью для различных значений спектрального параметра μ_k и шага изменения (вдоль координаты z), равного 10^{-3} и 10^{-7} . Для гидросистемы с параметрами $\rho_1 = 1$, $\rho_2 = 0.7$, $h_1 = 1$, $\sigma = 1$, a = 300000, найденные значения параметра γ_p при g = 9.81 представлены в табл. 1 (до третьего знака после запятой), а относительная погрешность полученных значений — в табл. 2.

Табл. 1. Результаты расчетов: значения γ_p^+ и β_p .

μ_k	γ_{k0}^+	β_{k0}	γ_{k1}^+	β_{k1}	γ_{k2}^+	β_{k2}	γ_{k3}^+	β_{k3}	γ_{k10}^+	β_{k10}
0.1	0.257	0.257	3.163	0.021	6.293	0.010	9.431	0.006	31.418	0.002
1	0.671	0.671	3.301	0.159	6.366	0.083	9.480	0.055	31.432	0.016
10	1.106	1.106	3.681	0.539	6.605	0.322	9.649	0.224	31.485	0.069
100	1.376	1.376	4.174	1.032	7.064	0.781	10.033	0.608	31.633	0.217
1000	1.503	1.503	4.511	1.369	7.526	1.243	10.550	1.125	32.020	0.604
10^{6}	1.568	1.568	4.705	1.563	7.842	1.559	10.979	1.554	32.939	1.523

Табл. 2. Относительная погрешность значений γ_p^+ .

p	$\mu = 0.1$	$\mu = 1$	$\mu = 10$	$\mu = 100$	$\mu = 1000$	$\mu = 10^6$
1	0.007	0.048	0.146	0.247	0.303	0.332
2	0.002	0.013	0.049	0.111	0.165	0.199
3	0.001	0.006	0.023	0.061	0.107	0.142
10	0.000	0.001	0.002	0.00		

Рис. 3. График нулевой моды смещений частиц и жидкости и газа при $\mu=11,12,13.$

Рис. 2. График смещений частиц жидкости и газа при $\mu = 100$ для разных значений γ_p .

Численное решение трансцендентного характеристического уравнения (5.6) дало результаты, согласующиеся с качественными физическими выводами и математическими свойствами спектральной задачи (1.2)–(1.6), а именно:

1) значения γ_p^+ расположены на правой полуоси;

2) с увеличением номера p значения γ_p^+ стремятся к величинам πp ;

3) наблюдалась тенденция к уменьшению как абсолютной, так и относительной погрешности для всех исследованных значений μ ; относительная погрешность 0.01% для значений γ_p^+ достигается для $\mu = 0.1$ уже при p = 3, тогда как для $\mu = 1$ этот факт наблюдается лишь при p = 10; с увеличением μ для достижения требуемой точности у всех значений γ_p^+ необходимо увеличить номер p;

4) замечено, что приближенные значения $\gamma_{k0}^+ \to \pi/2$ при $k \to \infty$.

Проведенные расчеты показали, что характеристическое уравнение (5.8) на отрезке $[0, \sqrt{\mu + \delta^2}]$ не имеет решения.

7. Физические выводы

Опираясь на установленные факты, сформулируем итоговые физические и математические выводы о свойствах решений спектральной задачи (1.2)–(1.6).

1°. При совместных колебаниях баротропного газа и идеальной несжимаемой жидкости в цилиндрическом сосуде в условиях, близких к невесомости, в изучаемой системе имеются акустические и капиллярно–гравитационные волны. Квадраты частот собственных колебаний этих волн образуют дискретный положительный спектр с предельной точкой на $+\infty$.

2°. При увеличении номеров волн происходит асимптотическое распадение собственных колебаний на два класса: акустические волны, близкие к соответствующим волнам в области газа с неподвижной границей раздела Γ , и волны типа погранслоя у Γ , отвечающие собственным колебаниям системы из двух идеальных несжимаемых жидкостей с плотностями ρ_1 и $\rho_{2,0}(0)$.

3°. При неограниченном возрастании скорости звука в газе $(a^2 \to \infty)$ все частоты колебаний акустических волн уходят в бесконечность, а частоты колебаний пограничных волн переходят в частоты колебаний системы из двух несжимаемых жидкостей.

4°. Совокупность собственных функций, отвечающих акустическим и пограничным волнам, образуют ортогональный базис в некотором гильбертовом пространстве. Это позволяет разлагать решения соответствующей начально-краевой задачи о малых движениях гидросистемы "жидкость-газ" в функциональные ряды по собственным функциям спектральной задачи.

Автор благодарит Н.Д. Копачевского за постановку задачи и внимание к работе.

Список цитируемых источников

1. Бабский В.Г., Копачевский Н.Д., Мышкис А.Д., Слобожанин Л.А., Тюпцов А.Д. Гидромеханика невесомости. — М.: Наука, 1976. — 504 с.

Э. Л. ГАЗИЕВ

- Бабский В.Г., Жуков М.Ю., Копачевский Н.Д., Мышкис А.Д., Слобожанин Л.А., Тюпцов А.Д. Методы решения задач гидромеханики для условий невесомости. — К.: Наукова думка, 1992. — 592 с.
- Войтицкий В.И., Имрякова М.А., Копачевский Н.Д., Лившиц А.И., Насонкина А.В. Три спектральные гидродинамические задачи о собственных колебаниях системы идеальных жидкостей в цилиндрическом сосуде // Ученые записки ТНУ. — 2008. — Т. 21, № 1. — С. 10–22.
- 4. Вронский Б.М. О малых движениях системы "жидкость–газ" в ограниченной области // Ученые записки ТНУ. 2004. Т. 17, № 1. С. 3–10.
- Газиев Э.Л. О малых движениях и собственных колебаниях системы "идеальная жидкость–баротропный газ" // Таврический Вестник информатики и математики. — 2011. — № 1. — С. 127–137.
- 6. Газиев Э.Л., Копачевский Н.Д. Малые движения и собственные колебания гидросистемы "жидкость-баротропный газ" // Украинский математический вестник. — в печати.
- 7. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981. 544 с.
- 8. Копачевский Н.Д., Крейн С.Г., Нго Зуй Кан. Операторные методы в линейной гидродинамике: Эволюционные и спектральные задачи. М.: Наука, 1989. 416 с.
- Копачевский Н.Д., Радякин Н.К. Две задачи о нормальных колебаниях системы из маловязких капиллярных жидкостей // Вопросы математической физики и функционального анализа. — К.: Наукова думка, 1976. — С. 93–110.
- Копачевский Н.Д. К проблеме малых движений гидросистемы "жидкость-газ"/ Тезисы докл. Междунар. конф. по прикл. матем. им. А.А. Дородницына. — М.: ВЦ РАН, Россия, 2010. — С. 120–122.
- Луковский И.А., Тимоха А.Н. Вариационная формулировка одной нелинейной краевой задачи с неизвестной поверхностью раздела двух областей / Устойчивость движения твердых тел и деформируемых систем. — К.: Ин-т математики АН УССР, 1989. — С. 7–10.
- 12. Луковский И.А., Тимоха А.Н. Собственные колебания свободной поверхности ограниченного объема жидкости, взаимодействующей с акустическим полем // Доклады АН УССР. 1990. № 12. С. 24–26.
- 13. Mихлин С.Г. Вариационные методы в математической физике. М.: Наука, 1970. 512 с.
- Моисеев Г.А. Движение твердого тела, имеющего полость, целиком заполненную двумя несмешивающимися жидкостями // Матем. физика. — 1973. — № 13. — С. 66– 73.
- 15. Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 1: Self-adjoint Problems for an Ideal Fluid. Basel: Birkhauser Verlag, 2001. 384 c.
- 16. Kopachevsky N.D., Padula M., Vronsky B.M. Small motions and eigenoscillations of a system "fluid–gas" in a bounded region // Ученые записки ТНУ им. В.И. Вернадского. — 2007. — Т. 20, № 1. — С. 3-–55.

Получена 20.02.2012